Какие полимеры называются термопластичными, термореактивными? Укажите три состояния полимеров. Чем характеризуются переход из одного состояния в другое? Термопластичность, термореактивность, три состояния полимеров

Тема урока: «Термопластичные полимеры»

Тип урока : урок усвоения новых знаний.

Форма урока : комбинированный урок.

Цель урока: продолжить знакомство с высокомолекулярными

соединениями на примере пластмасс, полученных на основе термопластичных полимеров; дать общую характеристику полиэтилена, полипропилена, поливинилхлорида, полистирола и полиметилметакрилата.

Задачи:

а) образовательная – познакомить учащихся с особенностями

термопластичных полимеров, с их составом, свойствами, со способами их

получения и областями применения;

научить учащихся доказывать некоторые свойства этих пластмасс.

б) воспитательная - воспитывать ответственное отношение к выполнению

заданий, уверенность в себе при ответе у доски, воспитывать патриотизм.

в) развивающая – способствовать дальнейшему развитию

интеллектуальных умений и навыков, делать умозаключения, выводы;

расширить общий кругозор учащихся и развить их интерес к изучению

Методы :

а) словесные – рассказ, сообщения учащихся, фронтальная беседа,

индивидуальные ответы учащихся.

б) наглядные – работа с таблицами, работа с коллекцией полимеров, работа

с магнитными моделями структурных звеньев полипропилена,

демонстрация коллекций изделий из различных полимеров, работа с

кодограммой.

в) практические – выполнение лабораторной работы.

Оборудование и реактивы :

коллекция термопластичных полимеров в пробирках – полиэтилен, полипропилен, поливинилхлорид, полистирол, полиметилметакрилат;

флипчарт интерактивной доски.

образцы изделий из полиэтилена – изолированные электропровода, плёнка, обложки тетрадей и книг, крышки от пластиковых бутылок, ёмкости от шампуней и от отбеливателей, пробки, трубки, утеплитель для окон, канистры от моторного масла и тормозной жидкости, пакеты, тюбики от кремов, прищепки

образцы изделий из полипропилена – сантехнические изделия, пластиковые бутылки, пластиковая одноразовая посуда, пластиковые стаканчики от мороженого, от сливочного масла, от плавленного сыра, мешок для сахара из технической ткани, сумка из технической ткани, синтетическая верёвка.

образцы изделий из поливинилхлорида – искусственная кожа, линолеум, изолированные электропровода, клеёнка, обложки для книг, футляр для фломастеров.

образцы изделий из полистирола – пуговицы, линейки, мыльница, ёмкости от шампуней, ёмкости от кремов, упаковка от таблеток, от конфет, от мыла, от лекарственных препаратов, одноразовая пластмассовая посуда, корпуса гелевых и шариковых авторучек.

образцы изделий из полиметилметарилата – линзы, стёкла от часов, стекло от абажура настольной лампы, стекло от аквариума, бижутерия, пуговицы.

На столах учащихся: спиртовки, спички, пробиркодержатели, асбестовые кружки, штативы для пробирок, стеклянные палочки, кусочки изделий из полиэтилена, образцы пластмасс, тигельные щипцы, дистиллированная вода.

План урока

    Организационный момент – 1мин.

    Проверка знаний – 10 мин.

    Изучение нового материала – 58 мин.

    Закрепление – 20 мин.

    Домашнее задание – 1мин.

    Организационный момент:

Итак, на предыдущем уроке мы начали знакомство с химией высокомолекулярных соединений и изучили основные понятия химии ВМС. И прежде чем мы приступим к дальнейшему изучению ВМС, проверим, насколько хорошо вы усвоили изученный материал.

    Проверка знаний:

Фронтальный опрос:

    Дайте определение реакций полимеризации и поликонденсации и обьясните в чём сходство и различие этих реакций.

    Каковы основные признаки веществ, вступающих в реакции полимеризации и поликонденсации? Назовите примеры таких реакций.

    Что такое мономер и что называется структурным звеном полимера? В чём их сходство и различие?

    Что такое макромолекула?

    Что называется степенью полимеризации? Как её подсчитать?

    Какую геометрическую форму имеют молекулы полимеров?

    Что такое термопластичные и термореактивные полимеры?

3. Изучение нового материала:

Сегодня на уроке мы будем изучать полимеры, получаемые в реакциях полимеризации. Все эти полимеры относятся к группе термопластичных полимеров. Цель этого урока более подробно изучить состав, получения, свойства и практическое значение термопластичных полимеров.

В школьном курсе химии изучается пять таких полимеров: полиэтилен, полипропилен, поливинилхлорид, полистирол и полиметилметакрилат. С их характеристикой мы будем знакомиться по плану.

Запишите его в тетради:

    Формула и название мономера.

    Уравнение реакции получения и структурное звено.

    Физические и химические свойства.

    Применение.

Первые два пункта характеристики мы будем записывать, с третьим пунктом будем знакомиться путём выполнения лабораторных и демонстрационных опытов, а по четвёртому пункту заслушаем отчёт групп, получивших заранее творческое задание.

Начнём с характеристики полиэтилена. Запишите заголовок

«Полиэтилен».

    Мономер – этилен.

    Уравнение реакции получения (нужно записать на доске – один ученик).

Не так давно эту реакцию осуществляли при высоком или при низком давлении и при строго определённой температуре. Сейчас полимеризацию полиэтилена и других термопластичных полимеров проводят при атмосферном давлении и при комнатной температуре в присутствии катализаторов – хлорида титана (II ) и металлоорганического соединения – триэтилалюминия.

Синтезированный при этих условиях полиэтилен получается более термостойким и обладает большей механической прочностью. Это объясняется тем, что полимер приобретает строго линейную структуру, в нём меньше ответвлений и поэтому молекулы плотнее примыкают друг к другу. Т.е. опять на этом примере мы убеждаемся в выводе А.М.Бутлерова о том, что свойства веществ зависят от их строения.

    Физические свойства: Посмотрите на образцы полиэтилена, находящиеся на ваших столах. Что вы можете сказать о его физических свойствах по внешнему виду?

Это твёрдое вещество белого цвета, в тонком слое он прозрачен и бесцветен. На ощупь это несколько жирное вещество, похожее на парафин. Его температура плавления 110 С. механическая прочность самая низкая среди термопластичных полимеров.

Отношение полиэтилена к нагреванию и его химические свойства мы изучим в ходе выполнения лабораторной работы.

Лабораторная работа «Изучение свойств полиэтилена».

Опыт №1. Кусочки полиэтилена (ПЭ) поместили в пробирку с водой.

Наблюдения: изменений не происходит.

Вывод: ПЭ устойчив к действию воды.

Опыт№2. Кусочек изделия из ПЭ слегка нагрели в пламени и стеклянной палочкой изменили его форму. Попробовали изменить форму изделия после охлаждения.

Наблюдения: в нагретом состоянии форма изменялась, в остывшем – нет.

Вывод: ПЭ обладает термопластичностью.

Опыт №3. Кусочек изделия из ПЭ подожгли.

Наблюдения: ПЭ горит голубоватым пламенем, распространяя запах расплавленного парафина.

Вывод: ПЭ при высокой температуре разлагается.

Опыт№4. Поместили по 1 кусочку ПЭ в пробирки а) с бромной водой, б) с

раствором перманганата калия.

Наблюдения: окраска растворов не изменилась.

Вывод: ПЭ устойчив к действию окислителей.

Опыт№5. Поместили по 1 кусочку ПЭ в пробирки а) с конц. серной к-той,

б) с конц. азотной к-той, в) с раствором гидроксида натрия.

Наблюдения: в пробирках с серной кислотой и гидроксидом натрия без изменений, а в пробирке с азотной кислотой ПЭ постепенно растворяется.

Вывод: ПЭ устойчив к действию кислот и щёлочей, кроме азотной кислоты.

Итак, в ходе лабораторной работы мы выяснили, что ПЭ устойчив к действию воды, окислителей, а также к действию кислот и щёлочей, за исключением азотной кислоты. Кроме этих свойств полиэтилен является хорошим диэлектриком, обладает газонепроницаемостью. Все эти свойства обусловили его практическое использование. Сейчас мы заслушаем выступление первой группы исследователей, получивших задание найти образцы изделий из полиэтилена среди предметов быта по характеру его горения.

Выступление первой группы исследователей (демонстрация предметов).

Представитель группы рассказывает о том, какие предметы исследовались, каков был характер горения этих образцов веществ, каков был цвет пламени и запах при горении. Рассказывает о применении полиэтилена.

Дополнительные вопросы:

    Какое свойство полиэтилена используется при его применении для изоляции проводов?

    Какое свойство полиэтилена используется при его применении в качестве упаковочного материала?

    Какое свойство полиэтилена используется при его применении для изготовления ёмкостей для хранения моторного масла и отбеливателей?

«Полипропилен».

1. Мономер - пропилен

2. Уравнение реакции получения (один ученик у доски)

Но в этой реакции имеются свои особенности – в процессе полимеризации

молекулы пропилена могут соединяться между собой по- разному. Если в каждой

молекуле выделить начало – «голову» и окончание «хвост», то тот способ,

который мы сейчас написали, называется «голова – хвост». Но молекулы могут

соединяться также и в порядке «голова – голова» (демонстрация). Возможен

также и смешанный порядок соединения.

В том случае, когда молекулы пропилена соединяются в порядке «голова-хвост» образуется полимер с правильным чередованием метильных групп в молекуле – такой полимер называют стереорегулярным. Для получения таких полимеров применяются специфические катализаторы, оптимальную температуру и давление. В стереорегулярном полимере макромолекулы плотно прилегают друг к другу, силы взаимного притяжения между ними возрастают, что сказывается на свойствах. Запишем «Стереорегулярный полимер»- это полимер с правильным чередованием боковых радикалов в молекуле. Для полипропилена стереорегулярность может быть обусловлена двумя вариантами строения углеродной цепи в макромолекуле (демонстрация). В первом случае метильные группы расположены строго по одну сторону углеродной цепи, во втором случае метильные радикалы расположены по обе стороны углеродной цепи, но строго регулярно.

3.Физические свойства полипропилена во многом сходны со свойствами полиэтилена. Это тоже твёрдое вещество от белого до желтоватого цвета, жирное на ощупь (найдите образец полипропилена на вашем столе). Он также устойчив к воде, окислителям, кислотам и щёлочам, но более термостоек.

Температура плавления полипропилена 160 – 180С Полипропилен имеет большую механическую прочность. Все эти свойства влияют на его применение.

Послушаем сообщение второй группы исследователей.

Выступление второй группы исследователей (демонстрация предметов).

Дополнительный вопрос: Какое свойство полипропилена используется при изготовлении из него мешков и хозяйственных сумок?

Учитель: В последнее время из полипропилена изготавливается большое число сантехнических изделий и сами водопроводные трубы. Полипропилен обладает сверхвысокой прочностью на изгиб, сжатие и нагрузки в широком интервале температур.

Трубы из полипропилена для системы горячего водоснабжения получают с помощью радиационной технологии. Тонна таких труб экономит 5 тонн металла и в несколько раз повышает срок службы всей системы.

Учитель: Следующий полимер, характеристику которого мы будем составлять – это поливинилхлорид.

«Поливинилхлорид».

1.Мономер - винилхлорид или хлорвинил

2.Уравнение реакции получения (один ученик пишет на доске).

3.Физические свойства: поливинилхлорид устойчив к действию кислот и щелочей, имеет хорошие диэлектрические свойства и обладает большой механической прочностью.

На основе поливинилхлорида получают пластмассы двух типов: винипласт (жесткий полимер) и пластикат (мягкий полимер). О применении поливинилхлорида заслушаем отчёт третьей группы исследователей.

Выступление третьей группы исследователей (демонстрация предметов).

Демонстрационный эксперимент – горение ПВХ.

Дополнительный вопрос : Из какого типа пластмассы – их винипласта или из пластиката – изготовлена искусственная кожа, клеёнка, линолеум и изоляция проводов?

Учитель: Из винипласта готовят химически стойкие трубы, детали химической

аппаратуры, аккумуляторные банки.

«Полистирол».

    Мономер - стирол

2.Уравнение реакции получения (один ученик пишет на доске).

Это тоже линейные молекулы, построенные по типу «голова – хвост».

3.Физические свойства: полистирол может быть прозрачным и непрозрачным, он обладает высокими диэлектрическими свойствами, химически стоек к действию щелочей и кислот, кроме азотной кислоты. О применении полистирола заслушаем отчёт 4 группы исследователей.

Выступление четвёртой группы исследователей (демонстрация предметов). Демонстрационный эксперимент – горение полистирола.

Учитель: Из полистирола готовят детали электро и радиоаппаратуры, декоративно-отделочные материалы – панели, облицовочные плиты, осветительную аппаратуру, посуду, детские игрушки. Также, путём добавления веществ-вспенивателей, из полистирола готовят пенополистирол, который часто называют пенопластом. Он используется как тепло- и звукоизоляционный материал в строительстве, в холодильной технике, в мебельной промышленности. Служит для упаковки транспортируемых приборов, пищевых продуктов и для изоляции трубопроводов.

«Полиметилметакрилат».

    Мономер – полиметилметакрилат – метиловый эфир метакриловой кислоты

    Уравнение реакции получения (один ученик пишет на доске)

    Физические свойства – полиметилметакрилат это твёрдое, бесцветное, прозрачное и светостойкое вещество, не разбивающееся при ударе, устойчивое к действию кислот и щелочей. Из-за прозрачности он получил название «органическое стекло». В отличие от обычного силикатного стекла оргстекло легко поддаётся механической обработке и подвергается склеиванию.

О применении полиметилметакрилата заслушаем сообщение пятой группы исследователей.

Выступление пятой группы исследователей (демонстрация изделий из полиметилметакрилата). Демонстрация горения полиметилметакрилата.

Учитель: Из полиметилметакрилата изготавливают светотехнические изделия, линзы, увеличительные стёкла, он используется в лазерной технике, для остекления самолётов, автомобилей, судов.

III .Закрепление.

А теперь вам предстоит выполнить самостоятельную работу, пользуясь материалом о полимерах, который находится на каждом столе – вы должны составить характеристику полимеров и занести данные в таблицу. Внешний вид будете записывать на основе наблюдений образцов полимеров имеющихся на ваших столах. Физические свойства: запишите плотность, температуру размягчения и механическую прочность на разрыв. Значение степени полимеризации подсчитаете на основе данных об относительной молекулярной массе.

IV . Домашнее задание: закончить составление конспекта.

Использованная литература:

1.Хомченко Г.П. «Пособие по химии для поступающих в ВУЗы», М., «Новая

волна», 1998.

2. Брейгер Л.М. «Поурочные планы. 10 класс», Волгоград, изд-во «Учитель»,

2001.

3.. Иванова Р.Г., Каверина А.А., Корощенко А.С. «Уроки химии», М.,

«Просвещение», 2002.

4. Потапов В.М., Татаринчик С.Н. «Органическая химия», М., «Химия», 1989 г.

К термопластичным полимерам относятся полиолефины, полиамиды, поливинилхлорид, фторопласты, полиуретаны.

Термопласты имеют невысокую температуру перехода в вязкотекучее состояние, хорошо перерабатываются литьем под давлением, экструзией и прессованием. Применяются термопласты в качестве изоляторов, химически стойких конструкционных материалов, прозрачных оптических стекол, пленок, волокон, а также в качестве связующих для получения композиционных материалов, лаков, клеев и др.

Полиэтилен представляет собой продукт полимеризации этилена. Это относительно твердый и упругий материал, без запаха, белый в толстом слое и прозрачный в тонком (см. образец 1.1). Полиэтилен легко перерабатывается различными методами, устойчив к ударным и вибрационным нагрузкам, агрессивным средам и воздействию радиации, обладает высокой морозостойкостью (до –70 °С). Полиэтилен склонен к старению при воздействии на него света. Для подавления необратимых процессов старения полиэтилена в него (как и в другие термопласты) вводят специальные добавки – стабилизаторы. Полиэтилен применяют для изготовления труб, литых и прессованных несиловых деталей, пленок, изоляции проводов и кабелей, а также в качестве защитных покрытий металлов от коррозии.

Полипропилен – производная этилена, жесткий нетоксичный материал с более высокими физико-механическими свойствами. По сравнению с полиэтиленом более теплостоек, сохраняет форму до 150 о С, однако морозостойкость ниже, до – 15 о С.

Применяется для изготовления труб, деталей автомобилей, мотоциклов, холодильников, корпусов насосов, емкостей, пленок (см. образец 1.2).

Поливинилхлорид (ПВХ) – аморфный полимер белого цвета, обладает высокими диэлектрическими свойствами, химической стойкостью, негорюч. Непластифицированный поливинилхлорид называется винипластом (см. образец 1.3). Винипласт имеет высокую механическую прочность и обладает хорошими электроизоляционными свойствами, легко формуется, хорошо поддается механической обработке, склеивается и сваривается, хрупок при отрицательных температурах (рабочий диапазон температур от 10 до + 70 °С). При нагревании разлагается с образованием ядовитых веществ и при пожаре представляет значительную опасность. Из винипласта изготавливают различные изделия краны, клапаны, задвижки, детали насосов, вентиляторов, облицовочную плитку, трубы и др.

Политетрафторэтилен – (фторопласт–4) является фторопроизводным продуктом этилена. В вязкотекучее состояние переходит при температуре 423 °С, прессование изделий производят при температуре 380 °С, т. к. при более высоких температурах выделяется токсичный фтор. Материал обладает высокой термостойкостью, стоек к действию кислот, щелочей, окислителей, растворителей. Фторопласт–4 имеет очень низкий коэффициент трения (f=0,04), сохраняет упругие свойства до 269 °С.


Фторопласт–4 применяется для изготовления: уплотнительных элементов, мембран, фурнитуры, работающих в агрессивных средах; антифрикционных покрытий на металлических изделиях; высокочастотной аппаратуры, кабелей, конденсаторов, тонких изоляционных пленок толщиной до 0,005 мм (см. образец 1.4).

Полистирол – твердый, жесткий, прозрачный полимер (пропускает 90 % света), обладает хорошими диэлектрическими свойствами, обладает высокой химической стойкостью, хорошо склеивается и окрашивается. Имеет низкую теплостойкость (до 80 0 С) и ударную вязкость. Для повышения вязкости производят сополимеризацию стирола с каучуками. Применяется для изготовления химически стойких сосудов, деталей электротехнического назначения (корпуса телевизоров, радиоприемников, телефонных аппаратов, магнитофонов), для получения электроизоляционных пленок для радиодеталей, нитей, а также упаковочной пленки. Из него изготовляют (см. образцы 1.5) предметы домашнего обихода, детские игрушки, школьно-канцелярские принадлежности (авторучки и пр.), тару для упаковки, трубы, внутреннюю отделку холодильников (морозоустойчивость до –70 °С), облицовочные материалы для внутренней отделки помещений, салонов автомобилей и т. д.

Полистирол, полученный эмульсионным методом, используется для производства пенопластов, применяемых в качестве термоизоляционного материала в строительстве, при изготовлении холодильников, а также для упаковки.

Полиметилметакрилат – (органическое стекло) – прозрачный полимер (пропускает 92 % света), стойкий к действию разбавленных кислот и щелочей, бензо- и маслостоек, морозостоек (до –60 °С), растворяется в органических растворителях, ароматических и хлорированных углеводородах. При температуре +105…+150 °С пластичен. Перерабатывается литьем под давлением, экструзией. Имеет невысокую твердость. Применяется для изготовления светотехнических изделий, оптических линз, радиодеталей (см. образец 1.6).

Полиамиды – (капрон, нейлон и др.) – полимер, обладающий хорошими механическими свойствами, высокой износостойкостью. Полиамиды не набухают в масле и бензине, не растворяются во многих растворителях, стойки к ударным нагрузкам и вибрациям. Используются с наполнителями, в качестве которых применяется стекловолокно до 30 % или графит до 10 %. Применяются для изготовления канатов, зубчатых колес, звездочек цепных передач, колес центробежных насосов, подшипников скольжения, а также нанесения защитных покрытий на металлах (см. образец 1.7).

Полиуретаны – полимеры, обладающие высокой эластичностью, морозостойкостью (до –70 °С), износостойкостью, устойчивы к действию разбавленных органических и минеральных кислот и масел. Применяются для изготовления труб, шлангов, уплотнителей, приготовления клеев для склеивания металлов, стекла, керамики (см. образец 1.8).

Полиэтилентерефталат (лавсан) – полиэфир, обладающий высокими прочностными свойствами, устойчивый к действию ультрафиолетовых и рентгеновских излучений, негорюч, диапазон рабочих температур от – 70 до + 255 °С, в 10 раз прочнее полиэтилена, хорошо сваривается и склеивается. Лавсан применяется для теплостойкой изоляции обмоток трансформаторов, электродвигателей, кабелей, деталей радиоаппаратуры, а также в качестве корда в ременных передачах, в покрышках, различных транспортерных лентах, основы магнитофонных лент, в качестве материала (ПЭТФ) бутылок для напитков (см. образцы 1.9).

Поликарбонат – полиэфир угольной кислоты, после быстрого охлаждения приобретает аморфную структуру и становится стеклообразным. Обладает высокими прочностью, ударной вязкостью, гибкостью, химически стоек. Из него изготавливают небьющуюся посуду, а также шестерни, подшипники и др. детали.

13.2 Термореактивные полимеры

Фенолоформальдегидные смолы – представляют собой продукты поликонденсации фенолов с формальдегидом. Фенолоформальдегидные смолы обладают высокими атмосферо- и термостойкостью, хорошими электроизоляционными свойствами, стойки к действию большинства кислот, за исключением концентрированной серной кислоты и кислот-окислителей (азотной, хромовой) (см. образец 2.1).

Эпоксидные смолы – олигомеры или мономеры, содержащие в молекуле не менее двух эпоксидных групп, способные превращаться в полимеры пространственного строения. Для холодного отверждения эпоксидных смол применяют в качестве отвердителей алифатические полиамины (полиэтиленполиамин, 5...15 % от массы смолы). Длительность отверждения 24 ч. Для горячего отверждения применяют ароматические ди- и полиамины. Отверждение проводят при температуре 100–180 °С в течение 16–4 ч. Прочность, химическая стойкость и теплостойкость эпоксидных компаундов при горячем отверждении выше, чем при холодном. Эпоксидные смолы обладают высокой адгезией к металлам, стеклу, керамике и другим материалам (см. образец 2.2).

Способны многократно размягчаться при нагревании и отвердевать при охлаждении. Эти и многие другие свойства термопластичных полимеров объясняются линейным строением их макромолекул. При нагревании взаимодействие между молекулами ослабевает и они могут сдвигаться одна относительно другой, полимер размягчается, превращаясь при дальнейшем нагревании в вязкую жидкость. На этом свойстве базируются различные способы формования изделий из термопластов, а также соединение их сваркой.

Однако на практике не все термопласты так просто можно перевести в вязко-текучее состояние, так как температура начала термического разложения некоторых полимеров ниже температуры их текучести (поливинилхлорид, фторопласты и др.). В таком случае используют различные технологические приемы, снижающие температуру текучести (например, вводя пластификаторы) или задерживающие термодеструкцию (введением стабилизаторов, переработкой в среде инертного газа).

Линейным строением молекул объясняется также способность термопластов не только набухать, но и хорошо растворяться в правильно подобранных растворителях. Тип растворителя зависит от химической природы полимера. Растворы полимеров даже очень небольшой концентрации (2...5 %) отличаются довольно высокой вязкостью. Причиной этого являются большие размеры полимерных молекул по сравнению с молекулами обычных низкомолекулярных веществ. После испарения растворителя полимер вновь переходит в твердое состояние. На этом основано использование растворов термопластов в качестве лаков, красок, клеев и вяжущего компонента в мастиках и полимеррастворах.

К недостаткам термопластов относятся; низкая теплостойкость (обычно не выше 80... 120 °С), низкая поверхностная твердость, хрупкость при пониженных температурах и текучесть при высоких, склонность к старению под действием солнечных лучей и кислорода воздуха.

Наибольшее применение в строительстве имеют следующие термопластичные полимеры: полиэтилен, полипропилен, полистирол, поливинилхлорид, перхлорвинил, поливинилацетат и поливиниловый спирт, полиизобутилен и полиакрилаты.

Полиэтилен , (-СН2-СН2-);1, - продукт полимеризации этилена, значительную часть которого получают при термической переработке нефтяных газов (этана, пропана, бутана) и гидролизе нефтепродуктов. Реакции полимеризации протекают при высоких давлении (до 250 МПа) и температуре 240...280 °С в присутствии кислорода, а каталитической полимеризации - при среднем или низком давлении.

Полимеризация этилена при высоком давлении производится в трубчатых реакторах и отличается сложностью технологического оборудования. В Республике Беларусь такое производство организовано на Новополоцком ОАО «Полимир».

Полиэтилен высокого давления - химически стойкий продукт плотностью 0,92...0,95 г/см3. Он обладает повышенной эластичностью, что объясняется наличием в нем 45 % аморфной фазы. Выпускается в виде гранул.

Полиэтилен низкого давления получают при температуре не выше 80 °С и давлении 0,05...0,6 МПа в среде растворителя (бензина) и в присутствии катализаторов. Он более хрупок и более склонен к старению, чем полиэтилен высокого давления.

Физико-механические свойства полиэтилена в значительной

мере зависят от степени полимеризации, т. е. от молекулярной

массы. Его предел прочности при растяжении в зависимости от

молекулярной массы колеблется от 18 до 45 МПа, плотность -

920.. .960 кг/м3, температура плавления - 110 125 °С. При дли

тельном действии нагрузки, составляющей более 50...60 % от

предельной, у полиэтилена начинает проявляться свойство теку

чести. Он сохраняет эластичность до температуры минус 70 °С,

легко перерабатывается в изделия и хорошо сваривается. Его

недостатки - низкие теплостойкость и твердость; горючесть и

быстрое старение под действием солнечного света. Для большей

стойкости к окислительным процессам и атмосферным воздей

ствиям в полиэтилен вводят различные стабилизаторы. Напри

мер, при введении в полиэтилен 2 % сажи срок службы его в ат

мосферных условиях увеличивается в 30 раз.

Из полиэтилена делают пленки (прозрачные и непрозрачные), трубы, электроизоляцию; вспененный полиэтилен в виде листов и труб используется для целей тепло- и звукоизоляции, а также в качестве герметизирующих прокладок.

Полипропилен , [-СН2-СН-]„, является продуктом полимеризации газа пропилена в растворителе. При синтезе полипропилена образуется несколько различных по строению полимеров: изотактический, атактический и синдиотактический. Тактичность - это способ, которым выстроены боковые группы вдоль основной цепи молекулы полимера.

В основном применяется изотактический полипропилен, когда все метальные группы расположены с одной стороны макромолекулы. Он отличается от полиэтилена большей твердостью, прочностью и теплостойкостью (температура размягчения - около 170 °С), но переход в хрупкое состояние происходит уже при минус 10...20 °С. Плотность полипропилена - 920...930 кг/м3; прочность при растяжении - 25...30 МПа. Применяют полипропилен практически для тех же целей, что и полиэтилен, но изделия из него более жесткие и формоустойчивые.

Атактический полипропилен (АПП) (в АПП метальные группы расположены случайным образом по обеим сторонам основной цепи макромолекулы) получается при синтезе пропилена как неизбежная примесь, но легко отделяется от изотакти-ческого пропилена экстракцией (растворением в углеводородных растворителях). АПП - мягкий эластичный продукт плотностью 840...845 кг/м3 с температурой размягчения 30...80 °С. Применяют АПП как модификатор битумных композиций в кровельных материалах.

Используя специальные металлоценовые катализаторы получают синдиотактический полипропилен, когда метальные группы расположены упорядоченно с обеих сторон основной цепи макромолекулы. Этот полимер похож на резину и является хорошим эластомером.

Полиизобутилен - каучукоподобный термопластичный полимер (параграф 17.5).

Полистирол, (-СН2-СН-)П, -прозрачный жесткий полимер плотностью 1050... 1080 кг/м3; при комнатной температуре он -жесткий и хрупкий, размягчается при нагревании до 80... 100 °С. Прочность при растяжении - 35...50 МПа. Полистирол хорошо растворяется в ароматических углеводородах, сложных эфирных и хлорированных углеводородах; горюч и хрупок; стоек к действию многих агрессивных веществ: щелочей, серной и других кислот; светопроницаем, светостоек.

Сырьем для получения служит стирол - прозрачная желтая воспламеняющаяся жидкость, вырабатываемая при гидролизе нефти или сухой перегонке угля. Стирол легко полимеризуется под действием солнечного света и теплоты. Полистирол вьтускают в виде прозрачных листов, гранул, бисера или белого порошка.

В строительстве полистирол применяют для изготовления теплоизоляционного материала - пенополистирола плотностью 10.. .50 кг/м3, облицовочных плиток и мелкой фурнитуры. Раствор полистирола в органических растворителях - хороший клей.

Блок - сополимер бутадиена и стирола (СБС) - это твердая резина, которая используется для модификации битума покровного слоя в гидроизоляционных материалах.

Поливинилацетат, (-CH2-CH-) получают полимеризацией винилацетата. Это прозрачный, жесткий при комнатной температуре полимер плотностью 1190 кг/м3. Поливинилацетат растворим в ацетоне, сложных эфирах, хлорированных и ароматических углеводородах, набухает в воде. Его положительное свойство - высокая адгезия к каменным материалам, стеклу и древесине.

В строительстве поливинилацетат применяют в виде поливи-иилацетатиой дисперсии (ПВАД) - сметанообразной массы белого или светло-кремового цвета, хорошо смешивающейся с водой. ПВАД получают полимеризацией жидкого винилацетата, находящегося в виде мельчайших частиц (менее 5 мкм) в воде. При этом капельки винилацетата превращаются в твердые частицы по-ливинилацетата. Стабилизатором эмульсии является поливиниловый спирт. Содержание полимера в дисперсии-около 50 %.

Выпускается средней (С), низкой (Н) и высокой (В) вязкости в пластифицированном и не-пластифицированном видах. Пластификатором служит дибу-тилфталат, содержание которого указывается в марке индексом. В грубодисперсной ПВАД, обычно применяемой в строительстве, содержание пластификатора следующее (% от массы полимера): 5... 10 (индекс4), 10... 15 (индекс 7) и 30...35 (индекс 20).

Необходимо помнить, что пластифицированная дисперсия неморозостойка и при замораживании необратимо разрушается с осаждением полимера. Поэтому в зимнее время пластификатор поставляют в отдельной упаковке. Для пластификации пластификатор перемешивают с дисперсией и выдерживают 3...4 часа для его проникновения в частицы полимера. Непластифициро-ванная дисперсия выдерживает не менее четырех циклов замораживания-оттаивания при температуре до минус 40 °С. Срок хранения ПВАД при температуре 5.. .20 °С - 6 месяцев.

Поливинилацетат широко применяют в строительстве. Наличие полярной группы приводит к тому, что молекулы ПВАД обладают высокой адгезией к полярным поверхностям, в том числе и к компонентам бетона. На его основе делают клеи, водно-дисперсионные краски, моющиеся обои. ПВАД применяют для устройства наливных мастичных полов и для модификации цементных растворов (полимерцементные растворы и бетоны рассмотрены в 14ЛЗ). Дисперсией, разбавленной до 5...10%-й концентрации, грунтуют бетонные поверхности перед приклеиванием облицовки на полимерных мастиках и перед нанесением полимерцементных растворов.

Недостаток материалов на основе дисперсий поливинилацетата - гидролиз в щелочной среде с образованием поливинилового спирта и кислоты. Поскольку образующиеся продукты гидролиза хорошо растворимы в воде, материалы набухают и на них могут появиться высолы. Это объясняется наличием в дисперсиях заметного количества водорастворимого стабилизатора и способностью самого полимера набухать в воде. Так как дисперсия имеет слабокислую реакцию (рН 4,5...6), при ее нанесении на металлические изделия возможна коррозия металла.

Поливинилхлорид, (-СН2-СНС1-)„, - самый распространенный полимер в строительстве. Он представляет собой твердый материал без запаха, бесцветный или желтоватый (при переработке в результате термодеструкции может приобрести светло-коричневый цвет). Сырьем для получения поливинилхлорида (ПВХ) служит винилхлорид (хлористый винил) - бесцветный газ с эфирным запахом и наркотическим действием.

Плотность ПВХ - 1400 кг/м3, предел прочности при растяжении - 40...60 МПа. Благодаря высокому содержанию хлорида поливинилхлорид не воспламеняется и практически не горит. Температура текучести поливинилхлорида - 180...200 °С, но уже при нагревании выше 160 °С он начинает разлагаться с выделением хлористого водорода Это обстоятельство затрудняет переработку поливинилхлорида в изделия.

Поливинилхлорид хорошо совмещается с пластификаторами. Это облегчает переработку и позволяет получать пластмассы с самыми разнообразными свойствами: жесткие листы и трубы, эластичные погонажные изделия, мягкие пленки. Поливинилхлорид хорошо сваривается; склеивается он только некоторыми видами клеев, например перхлорвиниловым. Положительное качество поливинилхлорида - высокие химическая стойкость, диэлектрические показатели и низкая горючесть.

В строительстве поливинилхлорид применяют для изготовления материалов для полов (различные виды линолеума, пвх-плитки) и отдельных декоративных пленок и пенопластов.

Перхлорвинил - продукт хлорирования поливинилхлорида, содержащий 60...70 % по массе хлора (вместо 56 % в поливинилхлориде). Плотность перхлорвинила - около 1500 кг/м\ Он характеризуется очень высокой химической стойкостью к кислотам, щелочам, окислителям; трудносгораем. В отличие от поливинилхлорида перхлорвинил легко растворяется в хлорированных углеводородах, ацетоне, толуоле, ксилоле и других растворителях. Положительное качество перхлорвинила - высокая адгезия к металлу, бетону, древесине, коже и поливинилхлориду. Сочетание высокой адгезии и хорошей растворимости позволяет использовать перхлорвинил в клеях и окрасочных составах. Перхлорвиниловые краски благодаря высокой стойкости этого полимера используются для отделки фасадов зданий.

Полиакрилаты получают полимеризацией акриловой и метакриловой кислот и их производных. Наиболее широкое применение из полиакрилатов получили полиметилметакрилат, полиметилакрилат, полиэтилакрилат и полибутилакрилат. Это бесцветные, светостойкие, прозрачные полимеры. Полиметилметакрилат, например, называют еще органическим стеклом. По сравнению с обычным оно менее хрупко и легко обрабатывается. Изделия из органического стекла имеют относительно высокую прочность; предел прочности на сжатие достигает 160 МПа, при изгибе - 80... 140 МПа и растяжении до 100 МПа. Оно отличается исключительной прозрачностью и способно пропускать до 74 % ультрафиолетовых лучей. Используют органическое стекло для остекления зданий специального назначения, витрин магазинов, оранжерей, фонарей производственных цехов и т. п. Однако высокая стоимость этого полимера и недостаточная абразивостойкость ограничивают его применение в строительстве.

Акриловые полимеры широко используют в производстве лаков и красок как добавки при производстве сухих смесей.

Международная маркировка термопластов для вторичной переработки

Термопласты (термопластичные полимеры) – это , которые размягчаются при нагревании и затвердевают при охлаждении. При комнатных температурах термопластичные полимерные материалы находятся в твердом (стеклообразном или кристаллическом) состоянии . При повышении температуры они переходят сначала в высокоэластическое состояние , затем (при дальнейшем нагревании) – в вязкотекучее состояние , что обеспечивает возможность формования термопластов различными методами. Переходы термопластов из твердого в высокоэластичное и вязкотекучее состоянии обратимы и могут повторяться многократно, что делает возможной вторичную переработку термопластичных полимеров.

Термопласты – это полимеры, у которых при нагревании не образуется поперечных химических связей и которые при некоторой, характерной для каждого полимера, температуре, могут многократно (повторно) размягчаться и переходить из твердого в пластическое состояние.

Термопласты выпускают в марочном ассортименте двух типов. Первый или базовый , включает марки, различающиеся по вязкостным (или молекулярным) параметрам. Их улучшают для переработки смазками, стабилизаторами и другими добавками. На основе базового марочного ассортимента создают марочный ассортимент по преобладающим эксплуатационным свойствам .

Базовые марки полимера предназначены для переработки разными методами (марки литьевые, экструзионные, для прессования и др.). Каждым методом получают широкую номенклатуру изделий, различающихся размерами. Например, литьем под давлением получают тонкостенные изделия с большими отношениями длины к толщине, изделия средней толщины и толстостенные изделия с малыми отношениями длины к толщине. Поэтому марки полимера по методу переработки подразделяются на марки по ассортименту изделий, характерному для соответствующего способа формования.

Марочный ассортимент полимеров по вязкости обеспечивает возможность переработки полимеров разными методами в изделия при оптимальных режимах. Использование нужной марки сокращает время и потери материла на разработку технологии, стабилизирует процесс переработки и свойства изготавливаемых изделий, обеспечивает экономию сырья.

Марочный ассортимент по эксплуатационным свойствам включает марки полимера, улучшенные по отдельным показателям (антифрикционные, износостойкие, свето- и теплостабилизированные, антистатические, специализированные по наполнителям, негорючие, пищевого, медицинского назначения, оптические и др.

Термопластичными называют полимеры, способные многократно размягчаться при нагревании и отвердевать при охлаждении. Эти и многие другие свойства термопластичных полимеров объясняются линейным строением их макромолекул. При нагревании взаимодействие между молекулами ослабевает и они могут сдвигаться одна относительно другой (как это происходит с частицами влажной глины), полимер размягчается, превращаясь при дальнейшем нагревании в вязкую жидкость.

Линейным строением молекул объясняется также способность термопластов не только набухать, но и хорошо растворяться в правильно подобранных растворителях. Тип растворителя зависит от химической природы полимера. Растворы полимеров, даже очень небольшой концентрации (2…5%), отличаются довольно высокой вязкостью, причиной этого являются большие размеры полимерных молекул по сравнению с молекулами обычных низкомолекулярных веществ. После испарения растворителя полимер вновь переходит в твердое состояние. На этом основано использование растворов термопластов в качестве лаков, красок, клеев и вяжущего компонента в мастиках и полимеррастворах.

К недостаткам термопластов относятся низкая теплостойкость (обычно не выше 80… 120 °С), низкая поверхностная твердость, хрупкость при пониженных температурах и текучесть при высоких, склонность к старению под действием солнечных лучей и кислорода воздуха.

В строительстве используется около 20…25 % производимых полимеров. Главнейшие термопластичные полимеры, применяемые в строительстве - поливинилхлорид, полистирол, полиэтилен и полипропилен, а также поливинилацетат, полиакрилаты, полиизобутилен и др.

Полиэтилен - продукт полимеризации этилена - самый распространенный в наше время полимер. Полиэтилен роговидный, жирный на ощупь, просвечивающийся материал, легко режется ножом; при поджигании горит и одновременно плавится с характерным запахом горящего парафина. При комнатной температуре полиэтилен практически не растворяется ни в одном из растворителей, но набухает в бензоле и хлорированных углеводородах; при температуре выше 70. ..80 °С он растворяется в указанных растворителях.

Полиэтилен обладает высокой химической стойкостью, биологически инертен. Под влиянием солнечного излучения (УФ его составляющей) полиэтилен стареет, теряя эксплуатационные свойства.

При нагреве до 50…60 °С полиэтилен снижает свои прочностные показатели, но при этом сохраняет эластичность до минус 60…70 °С. Полиэтилен хорошо сваривается и легко перерабатывается в изделия. Из него изготавливают пленки (прозрачные и непрозрачные), трубы, электроизоляцию. Вспененный полиэтилен в виде листов и труб используется для целей теплоизоляции и герметизирующих прокладок.


Недостатки полиэтилена - низкая теплостойкость и твердость, горючесть, быстрое старение под действием солнечного света. Защищают полиэтилен от старения, вводя в него наполнители (сажу, алюминиевую пудру) и/или специальные стабилизаторы.

Полипропилен - полимер, по составу близкий к полиэтилену. При синтезе полипропилена образуется несколько различных по строению полимеров: изотактический, атактический и синдиотактический.

В основном применяется изотактический полипропилен. Он отличается от полиэтилена большей твердостью, прочностью и теплостойкостью (температура размягчения около 170 °С), но переход в хрупкое состояние происходит уже при минус 10…20 ºС.

Максимальная температура эксплуатации для изделий из полипропилена 120…140 °С, но изделия, находящиеся в нагруженном состоянии, например трубы горячего водоснабжения, не рекомендуется использовать при температуре выше 75 °С.

Применяют полипропилен практически для тех же целей, что и полиэтилен, но изделия из него более жесткие и формоустойчивые.

Атактический полипропилен (АПП) получается при синтезе полипропилена как неизбежная примесь, но легко отделяется от изотактического полипропилена экстракцией (растворением в углеводородных растворителях).

Полиизобутилен - каучукоподобный термопластичный полимер.

Полистирол (поливинилбензол) - прозрачный полимер плотностью 1050…1080 кг/м; при комнатной температуре жесткий и хрупкий, а при нагревании до 80… 100 °С размягчающийся. Прочность при растяжении (при 20 °С) 35…50 МПа. Полистирол хорошо растворяется в ароматических углеводородах (влияние бензольного кольца, входящего в состав молекул полистирола), сложных эфирах и хлорированных углеводородах. Полистирол горюч и хрупок.

В строительстве полистирол применяют для изготовления теплоизоляционного материала - пенополистирола (плотностью 15…50 кг/м), облицовочных плиток и мелкой фурнитуры. Раствор полистирола в органических растворителях - хороший клей.

Поливинилацетат - прозрачный бесцветный жесткий при комнатной температуре полимер плотностью 1190 кг/м. Поливинилацетат растворим в кетонах (ацетоне), сложных эфирах, хлорированных и ароматических углеводородах, набухает в воде; в алифатических и терпеновых углеводородах не растворяется. Поливинилацетат не стоек к действию кислот и щелочей; при нагреве выше 130… 150 °С он разлагается с выделением уксусной кислоты. Положительное свойство поливинилацетата - высокая адгезия к каменным материалам, стеклу, древесине.

В строительстве поливинилацетат применяют в виде поливинилацетатной дисперсии (ПВАД) - сметанообразной массы белого или светло-кремового цвета, хорошо смешивающейся с водой. Поливинилацетатную дисперсию получают полимеризацией жидкого винилацетата, эмульсированного в виде мельчайших частиц (до 5 мкм) в воде.

Поливинилацетат широко применяют в строительстве. На его основе делают клеи, вододисперсионные краски, моющиеся обои. ПВАД применяют для устройства наливных мастичных полов и для модификации цементных растворов. Дисперсией, разбавленной до 5…10 -ной концентрации, грунтуют бетонные поверхности перед приклеиванием облицовки на полимерных мастиках и перед нанесением полимерцементных растворов.

Недостаток материалов на основе дисперсий поливинилацетата - чувствительность к воде: материалы набухают, и на них могут появиться высолы.

Поливинилхлорид - самый распространенный в строительстве полимер - представляет собой твердый материал без запаха и вкуса, бесцветный или желтоватый (при переработке в результате термодеструкции может приобрести светло-коричневый цвет).Температура текучести поливинилхлорида 180…200 °С, но уже при нагревании выше 160 °С.

Поливинилхлорид хорошо совмещается с пластификаторами. Это облегчает переработку и позволяет получать пластмассы с самыми разнообразными свойствами: жесткие листы и трубы, эластичные погонажные изделия, мягкие пленки.

Поливинилхлорид хорошо сваривается; склеивается он только некоторыми видами клеев, например перхлорвиниловым. Положительное качество поливинилхлорида - высокие химическая стойкость, диэлектрические показатели и низкая горючесть.

В строительстве поливинилхлорид применяют для изготовления материалов для полов (различные виды линолеума, плитки), труб, погонажных изделий (поручни, плинтусы сайдинг и т. п.) и отделочных декоративных пленок и пенопластов.

Перхлорвинил - продукт хлорирования поливинилхлорида, содержащий 60…70 (по массе) хлора, вместо 56 % в поливинилхлориде. Плотность перхлорвинила около 1500 кг/м. Он характеризуется очень высокой химической стойкостью (к кислотам, щелочам, окислителям); трудносгораем. В отличие от поливинилхлорида перхлорвинил легко растворяется в хлорированных углеводородах, ацетоне, этилацетате, толуоле, ксилоле и других растворителях.

Положительное качество перхлорвинила - высокая адгезия к металлу, бетону, древесине, коже и поливинилхлориду. Сочетание высокой адгезии и хорошей растворимости позволяет использовать перхлорвинил в клеях и окрасочных составах. Перхлорвиниловые краски благодаря высокой стойкости этого полимера используют для отделки фасадов зданий.

Поликарбонаты - сравнительно новая для строительства группа полимеров - сложных эфиров угольной кислоты. Они отличаются высокими физико-механическими показателями, мало изменяющимися в интервале температур от - 100 до + 150 ºС. Плотность поликарбонатов 1200 кг/м 3 ; прочность при растяжении 65 ± 10 МПа при относительном удлинении 50…100 %; у них высокая ударопрочность и твердость (НВ 15…16 МПа).

Перерабатывают поликарбонат в изделия экструзией, литьем под давлением горячим прессованием и др. Он легко обрабатывается механическими методами, сваривается горячим воздухом и склеивается с помощью растворителей. Поликарбонаты оптически прозрачны, устойчивы к атмосферным воздействиям, в том числе и к УФ-облучению. Их широко применяют для электротехнических изделий (розеток, вилок, телефонных аппаратов и т.п.). В строительстве листовой поликарбонат и пустотелые (сотовые) панели используют для светопрозрачных ограждений.

Кумароноинденовые полимеры - полимеры, получаемые полимеризацией смеси кумарона и индена, содержащихся в каменноугольной смоле и продуктах пиролиза нефти.

Кумароноинденовый полимер имеет небольшую молекулярную массу (менее 3000) и в зависимости от ее значения может быть каучукоподобным или твердым хрупким материалом. Снизить хрупкость кумароноинденовых полимеров можно совмещая их с каучуками, фенолформальдегидными смолами и другими полимерами. Эти полимеры хорошо растворяются в бензоле, скипидаре, ацетоне, растительных и минеральных маслах.

Кумароноинденовые полимеры в расплавленном или растворенном виде хорошо смачивают другие материалы, а после затвердевания сохраняют адгезию к материалу, на который были нанесены. Из них изготовляют плитки для полов, лакокрасочные материалы и приклеивающие мастики.