Как найти площадь трапеции? Как найти высоту трапеции.

В математике известно несколько видов четырехугольников: квадрат, прямоугольник, ромб, параллелограмм. Среди них и трапеция - вид выпуклого четырехугольника, у которого две стороны параллельны, а две другие нет. Параллельные противоположные стороны называются основаниями, а две другие – боковыми сторонами трапеции. Отрезок, который соединяет середины боковых сторон, называется средней линией. Существует несколько видов трапеций: равнобедренная, прямоугольная, криволинейная. Для каждого вида трапеции есть формулы для нахождения площади.

Площадь трапеции

Чтобы найти площадь трапеции, нужно знать длину ее оснований и высоту. Высота трапеции - это отрезок, перпендикулярный основаниям. Пусть верхнее основание - a, нижнее основание - b, а высота - h. Тогда вычислить площадь S можно по формуле:

S = ½ * (a+b) * h

т.е. взять полусумму оснований, умноженную на высоту.

Также удастся вычислить площадь трапеции, если известно значение высоты и средней линии. Обозначим среднюю линию - m. Тогда

Решим задачу посложнее: известны длины четырех сторон трапеции - a, b, c, d. Тогда площадь отыщется по формуле:


Если известны длины диагоналей и угол между ними, то площадь ищется так:

S = ½ * d1 * d2 * sin α

где d с индексами 1 и 2 - диагонали. В данной формуле в расчете приводится синус угла.

При известных длинах оснований a и b и двух углах при нижнем основании площадь вычисляется так:

S = ½ * (b2 - a2) * (sin α * sin β / sin(α + β))

Площадь равнобедренной трапеции

Равнобедренная трапеция - это частный случай трапеции. Ее отличие в том, что такая трапеция - это выпуклый четырехугольник с осью симметрии, проходящей через середины двух противоположных сторон. Ее боковые стороны равны.


Найти площадь равнобедренной трапеции можно несколькими способами.

  • Через длины трех сторон. В этом случае длины боковых сторон будут совпадать, поэтому обозначены одной величиной - с, а и b - длины оснований:

  • Если известна длина верхнего основания, боковой стороны и величина угла при нижнем основании, то площадь вычисляется так:

S = c * sin α * (a + c * cos α)

где а - верхнее основание, с - боковая сторона.

  • Если вместо верхнего основания известна длина нижнего – b, площадь рассчитывается по формуле:

S = c * sin α * (b – c * cos α)

  • Если когда известны два основания и угол при нижнем основании, площадь вычисляется через тангенс угла:

S = ½ * (b2 – a2) * tg α

  • Также площадь рассчитывается через диагонали и угол между ними. В этом случае диагонали по длине равны, поэтому каждую обозначаем буквой d без индексов:

S = ½ * d2 * sin α

  • Вычислим площадь трапеции, зная длину боковой стороны, средней линии и величину угла при нижнем основании.

Пусть боковая сторона - с, средняя линия - m, угол - a, тогда:

S = m * c * sin α

Иногда в равностороннюю трапецию можно вписать окружность, радиус которой будет - r.


Известно, что в любую трапецию можно вписать окружность, если сумма длин оснований равна сумме длин ее боковых сторон. Тогда площадь найдется через радиус вписанной окружности и угол при нижнем основании:

S = 4r2 / sin α

Такой же расчет производится и через диаметр D вписанной окружности (кстати, он совпадает с высотой трапеции):

Зная основания и угол, площадь равнобедренной трапеции вычисляется так:

S = a * b / sin α

(эта и последующие формулы верны только для трапеций с вписанной окружностью).


Через основания и радиус окружности площадь ищется так:

Если известны только основания, то площадь считается по формуле:


Через основания и боковую линию площадь трапеции с вписанным кругом и через основания и среднюю линию - m вычисляется так:

Площадь прямоугольной трапеции

Прямоугольной называется трапеция, у которой одна из боковых сторон перпендикулярна основаниям. В этом случае боковая сторона по длине совпадает с высотой трапеции.

Прямоугольная трапеция представляет из себя квадрат и треугольник. Найдя площадь каждой из фигур, сложите полученные результаты и получите общую площадь фигуры.


Также для вычисления площади прямоугольной трапеции подходят общие формулы для расчета площади трапеции.

  • Если известны длины оснований и высота (или перпендикулярная боковая сторона), то площадь рассчитывается по формуле:

S = (a + b) * h / 2

В качестве h (высоты) может выступать боковая сторона с. Тогда формула выглядит так:

S = (a + b) * c / 2

  • Другой способ рассчитать площадь - перемножить длину средней линии на высоту:

или на длину боковой перпендикулярной стороны:

  • Следующий способ вычисления - через половину произведения диагоналей и синус угла между ними:

S = ½ * d1 * d2 * sin α


Если диагонали перпендикулярны, то формула упрощается до:

S = ½ * d1 * d2

  • Еще один способ вычисления - через полупериметр (сумма длин двух противоположных сторон) и радиус вписанной окружности.

Эта формула действительна для оснований. Если брать длины боковых сторон, то одна из них будет равна удвоенному радиусу. Формула будет выглядеть так:

S = (2r + c) * r

  • Если в трапецию вписана окружность, то площадь вычисляется так же:

где m - длина средней линии.

Площадь криволинейной трапеции

Криволинейная трапеция представляет из себя плоскую фигуру, ограниченную графиком неотрицательной непрерывной функции y = f(x), определенной на отрезке , осью абсцисс и прямыми x = a, x = b. По сути, две ее стороны параллельны друг другу (основания), третья сторона перпендикулярна основаниям, а четвертая представляет из себя кривую, соответствующую графику функции.


Площадь криволинейной трапеции ищут через интеграл по формуле Ньютона-Лейбница:


Так вычисляются площади различных видов трапеций. Но, помимо свойств сторон, трапеции обладают одинаковыми свойствами углов. Как у всех существующих четырехугольников, сумма внутренних углов трапеции равна 360 градусов. А сумма углов, прилежащих к боковой стороне, - 180 градусам.


Площадь трапеции. Приветствую вас! В этой публикации мы рассмотрим указанную формулу. Почему она именно такая и как её понять. Если будет понимание, то и учить её вам нет необходимости. Если же вы просто хотите посмотреть эту формулу и при чём срочно, то сразу можете прокрутить страницу вниз))

Теперь подробно и по порядку.

Трапеция это четырёхугольник, две стороны этого четырёхугольника параллельны, две другие нет. Те, что не параллельны – это основания трапеции. Две другие называются боковыми сторонами.

Если боковые стороны равны, то трапеция называется равнобедренной. Если одна из боковых сторон перпендикулярна основаниям, то такая трапеция называется прямоугольной.

В классическом виде трапецию изображают следующим образом – большее основание находится внизу, соответственно меньшее вверху. Но никто не запрещает изображать её и наоборот. Вот эскизы:


Следующее важное понятие.

Средняя линия трапеции это отрезок, который соединяет середины боковых сторон. Средняя линия параллельна основаниям трапеции и равна их полусумме.

Теперь давайте вникнем глубже. Почему именно так?

Рассмотрим трапецию с основаниями a и b и со средней линией l , и выполним некоторые дополнительные построения: через основания проведём прямые, а через концы средней линии перпендикуляры до пересечения с основаниями:


*Буквенные обозначения вершин и других точек не введены умышленно, чтобы избежать лишних обозначений.

Посмотрите, треугольники 1 и 2 равны по второму признаку равенства треугольников, треугольники 3 и 4 тоже самое. Из равенства треугольников следует равенство элементов, а именно катетов (они обозначены соответственно синим и красным цветом).

Теперь внимание! Если мы мысленно «отрежем» от нижнего основания синий и красный отрезок, то у нас останется отрезок (это сторона прямоугольника) равный средней линии. Далее, если мы «приклеим» отрезанные синий и красный отрезок к верхнему основанию трапеции, то у нас получится также отрезок (это тоже сторона прямоугольника) равный средней линии трапеции.

Уловили? Получается, что сумма оснований будет равна двум средним линиям трапеции:

Посмотреть ещё одно объяснение

Сделаем следующее – построим прямую проходящую через нижнее основание трапеции и прямую, которая пройдёт через точки А и В:


Получим треугольники 1 и 2, они равны по стороне и прилегающим к ней углам (второй признак равенства треугольников). Это означает что полученный отрезок (на эскизе он обозначен синим) равен верхнему основанию трапеции.

Теперь рассмотрим треугольник:


*Средняя линия данной трапеции и средняя линия треугольника совпадают.

Известно, что треугольника равна половине параллельного ей основания, то есть:

Хорошо, разобрались. Теперь о площади трапеции.

Площадь трапеции формула:


Говорят: площадь трапеции равна произведению полусуммы её оснований и высоты.

То есть, получается, что она равна произведению средней линии и высоты:

Вы, наверное, уже заметили, что это очевидно. Геометрически это можно выразить так: если мы мысленно отрежем от трапеции треугольники 2 и 4 и положим их соответственно на треугольники 1 и 3:


То у нас получится прямоугольник по площади равный площади нашей трапеции. Площадь этого прямоугольника будет равна произведению средней линии и высоты, то есть можем записать:

Но дело тут не в записи, конечно, а в понимании.

Скачать (посмотреть) материал статьи в формате *pdf

На этом всё. Успеха вам!

С уважением, Александр.

Многоликая трапеция... Она может быть произвольной, равнобедренной или прямоугольной. И в каждом случае нужно знать, как найти площадь трапеции. Конечно, проще всего запомнить основные формулы. Но иногда проще воспользоваться той, которая выведена с учетом всех особенностей конкретной геометрической фигуры.

Несколько слов о трапеции и ее элементах

Любой четырехугольник, у которого две стороны параллельны, можно назвать трапецией. В общем случае они не равны и называются основаниями. Большее из них — нижнее, а другое — верхнее.

Две другие стороны оказываются боковыми. У произвольной трапеции они имеют различную длину. Если же они равны, то фигура становится равнобедренной.

Если вдруг угол между любой боковой стороной и основанием окажется равным 90 градусам, то трапеция является прямоугольной.

Все эти особенности могут помочь в решении задачи о том, как найти площадь трапеции.

Среди элементов фигуры, которые могут оказаться незаменимыми в решении задач, можно выделить такие:

  • высота, то есть отрезок, перпендикулярный обоим основаниям;
  • средняя линия, которая имеет своими концами середины боковых сторон.

По какой формуле вычислить площадь, если известны основания и высота?

Это выражение дается основным, потому что чаще всего можно узнать эти величины, даже когда они не даны явно. Итак, чтобы понять, как найти площадь трапеции, потребуется сложить оба основания и разделить их на два. Получившееся значение потом еще умножить на значение высоты.

Если обозначить основания буквами а 1 и а 2 , высоту — н, то формула для площади будет выглядеть так:

S = ((а 1 + а 2)/2)*н.

Формула, по которой вычисляется площадь, если даны ее высота и средняя линия

Если посмотреть внимательно на предыдущую формулу, то легко заметить, что в ней явно присутствует значение средней линии. А именно, сумма оснований, деленная на два. Пусть средняя линия будет обозначена буквой l, тогда формула для площади станет такой:

S = l * н.

Возможность найти площадь по диагоналям

Этот способ поможет, если известен угол, образованный ими. Предположим, что диагонали обозначены буквами д 1 и д 2 , а углы между ними — α и β. Тогда формула того, как найти площадь трапеции, будет записана следующим образом:

S = ((д 1 * д 2)/2) * sin α.

В этом выражении можно легко заменить α на β. Результат не изменится.

Как узнать площадь, если известны все стороны фигуры?

Бывают и такие ситуации, когда в этой фигуре известны именно стороны. Эта формула получается громоздкой и ее сложно запомнить. Но возможно. Пусть боковые стороны имеют обозначение: в 1 и в 2 , основание а 1 больше, чем а 2 . Тогда формула площади примет такой вид:

S = ((а 1 + а 2) / 2) * √ {в 1 2 - [(а 1 - а 2) 2 + в 1 2 - в 2 2) / (2 * (а 1 - а 2))] 2 }.

Способы вычисления площади равнобедренной трапеции

Первый связан с тем, что в нее можно вписать окружность. И, зная ее радиус (он обозначается буквой r), а также угол при основании — γ, можно воспользоваться такой формулой:

S = (4 * r 2) / sin γ.

Последняя общая формула, которая основана на знании всех сторон фигуры, существенно упростится за счет того, что боковые стороны имеют одинаковое значение:

S = ((а 1 + а 2) / 2) * √ {в 2 - [(а 1 - а 2) 2 / (2 * (а 1 - а 2))] 2 }.

Методы вычисления площади прямоугольной трапеции

Понятно, что подойдет любой из перечисленных для произвольной фигуры. Но иногда полезно знать об одной особенности такой трапеции. Она заключается в том, что разность квадратов длин диагоналей равна разности, составленной из квадратов оснований.

Часто формулы для трапеции забываются, в то время как выражения для площадей прямоугольника и треугольника помнятся. Тогда можно применить простой способ. Разделить трапецию на две фигуры, если она прямоугольная, или три. Одна точно будет прямоугольником, а вторая, или две оставшиеся, треугольниками. После вычисления площадей этих фигур останется их только сложить.

Это достаточно простой способ того, как найти площадь прямоугольной трапеции.

Как быть, если известны координаты вершин трапеции?

В этом случае потребуется воспользоваться выражением, которое позволяет определить расстояние между точками. Его можно применить три раза: для того, чтобы узнать оба основания и одну высоту. А потом просто применить первую формулу, которая описана немного выше.

Для иллюстрации такого метода можно привести такой пример. Даны вершины с координатами А(5; 7), В(8; 7), С(10; 1), Д(1; 1). Нужно узнать площадь фигуры.

До того как найти площадь трапеции, по координатам нужно вычислить длины оснований. Потребуется такая формула:

длина отрезка = √{(разность первых координат точек) 2 + (разность вторых координат точек) 2 }.

Верхнее основание обозначено АВ, значит, его длина будет равна √{(8-5) 2 + (7-7) 2 } = √9 = 3. Нижнее — СД = √ {(10-1) 2 + (1-1) 2 } = √81 = 9.

Теперь нужно провести высоту из вершины на основание. Пусть ее начало будет в точке А. Конец отрезка окажется на нижнем основании в точке с координатами (5; 1), пусть это будет точка Н. Длина отрезка АН получится равной √{(5-5) 2 + (7-1) 2 } = √36 = 6.

Осталось только подставить получавшиеся значения в формулу площади трапеции:

S = ((3 + 9) / 2) * 6 = 36.

Задача решена без единиц измерения, потому что не указан масштаб координатной сетки. Он может быть как миллиметр, так и метр.

Примеры задач

№ 1. Условие. Известен угол между диагоналями произвольной трапеции, он равен 30 градусам. Меньшая диагональ имеет значение 3 дм, а вторая больше ее в 2 раза. Необходимо посчитать площадь трапеции.

Решение. Для начала нужно узнать длину второй диагонали, потому что без этого не удастся сосчитать ответ. Вычислить ее несложно, 3 * 2 = 6 (дм).

Теперь нужно воспользоваться подходящей формулой для площади:

S = ((3 * 6) / 2) * sin 30º = 18/2 * ½ = 4,5 (дм 2). Задача решена.

Ответ: площадь трапеции равна 4,5 дм 2 .

№ 2. Условие. В трапеции АВСД основаниями являются отрезки АД и ВС. Точка Е - середина стороны СД. Из нее проведен перпендикуляр к прямой АВ, конец этого отрезка обозначен буквой Н. Известно, что длины АВ и ЕН равны соответственно 5 и 4 см. Нужно вычислить площадь трапеции.

Решение. Для начала нужно сделать чертеж. Поскольку значение перпендикуляра меньше стороны, к которой он проведен, то трапеция будет немного вытянутой вверх. Так ЕН окажется внутри фигуры.

Чтобы отчетливо увидеть ход решения задачи, потребуется выполнить дополнительное построение. А именно, провести прямую, которая будет параллельна стороне АВ. Точки пересечения этой прямой с АД — Р, а с продолжением ВС — Х. Получившаяся фигура ВХРА — параллелограмм. Причем его площадь равна искомой. Это связано с тем, что треугольники, которые получились при дополнительном построении, равны. Это следует из равенства стороны и двух прилежащих к ней углов, один — вертикальный, другой - накрест лежащий.

Найти площадь параллелограмма можно по формуле, которая содержит произведение стороны и высоты, опущенной на нее.

Таким образом, площадь трапеции равна 5 * 4 = 20 см 2 .

Ответ: S = 20 см 2 .

№ 3. Условие. Элементы равнобедренной трапеции имеют такие значения: нижнее основание - 14 см, верхнее — 4 см, острый угол — 45º. Нужно вычислить ее площадь.

Решение. Пусть меньшее основание имеет обозначение ВС. Высота, проведенная из точки В, будет называться ВН. Поскольку угол 45º, то треугольник АВН получится прямоугольный и равнобедренный. Значит, АН=ВН. Причем АН очень легко найти. Она равна половине разности оснований. То есть (14 - 4) / 2 = 10 / 2 = 5 (см).

Основания известны, высота сосчитана. Можно пользоваться первой формулой, которая здесь была рассмотрена для произвольной трапеции.

S = ((14 + 4) / 2) * 5 = 18/2 * 5 = 9 * 5 = 45 (см 2).

Ответ: Искомая площадь равна 45 см 2 .

№ 4. Условие. Имеется произвольная трапеция АВСД. На ее боковых сторонах взяты точки О и Е, так что ОЕ параллельна основанию АД. Площадь трапеции АОЕД в пять раз больше, чем у ОВСЕ. Вычислить значение ОЕ, если известны длины оснований.

Решение. Потребуется провести две параллельные АВ прямые: первую через точку С, ее пересечение с ОЕ — точка Т; вторую через Е и точкой пересечения с АД будет М.

Пусть неизвестная ОЕ=х. Высота меньшей трапеции ОВСЕ — н 1 , большей АОЕД — н 2 .

Поскольку площади этих двух трапеций соотносятся как 1 к 5, то можно записать такое равенство:

(х + а 2) * н 1 = 1/5 (х + а 1) * н 2

н 1 /н 2 = (х + а 1) / (5(х + а 2)).

Высоты и стороны треугольников пропорциональны по построению. Поэтому можно записать еще одно равенство:

н 1 /н 2 = (х - а 2) / (а 1 - х).

В двух последних записях в левой части стоят равные величины, значит, можно написать, что (х + а 1) / (5(х + а 2)) равно (х - а 2) / (а 1 - х).

Здесь требуется провести ряд преобразований. Сначала перемножить крест накрест. Появятся скобки, которые укажут на разность квадратов, после применения этой формулы получится короткое уравнение.

В нем нужно раскрыть скобки и перенести все слагаемые с неизвестной «х» в левую сторону, а потом извлечь квадратный корень.

Ответ : х = √ {(а 1 2 + 5 а 2 2) / 6}.

Трапецией называется такой четырехугольник, две стороны у которого параллельны (это основания трапеции, обозначенные на рисунке a и b), а другие две - нет (на рисунке АД и CB). Высота трапеции - это отрезок h, проведенный перпендикулярно к основаниям.

Как найти высоту трапеции при известных величинах площади трапеции и длин оснований?

Для вычисления площади S трапеции ABCD, воспользуемся формулой:

S = ((a+b) × h)/2.

Здесь отрезки a и b - это основания трапеции, h - это высота трапеции.

Преобразуя эту формулу, можем записать:

Используя эту формулу, получим значение h, если известны величина площади S и величины длин оснований a и b.

Пример

Если известно, что площадь трапеции S равна 50 см², длина основания a составляет 4 см, длина основания b составляет 6 см, то, чтобы найти высоту h, используем формулу:

Подставляем в формулу известные величины.

h = (2 × 50)/(4+6) = 100/10 = 10 см

Ответ: высота трапеции составляет 10 см.

Как находить высоту трапеции, если даны величины площади трапеции и длина средней линии?

Воспользуемся формулой вычисления площади трапеции:

Здесь m - средняя линия, h - высота трапеции.

Если возникает вопрос, как найти высоту трапеции, формула:

h = S/m, будет ответом.

Таким образом, можем найти величину высоты трапеции h, имея известные величины площади S и отрезка средней линии m.

Пример

Известна длина средней линии трапеции m, которая составляет 20 см, и площадь S, которая равна 200 см². Найдем значение величины высоты трапеции h.

Подставив значения S и m, получим:

h = 200/20 = 10 см

Ответ: высота трапеции составляет 10 см

Как найти высоту прямоугольной трапеции?

Если трапеция - это четырехугольник, с двумя параллельными сторонами (основаниями) трапеции. То диагональ - это отрезок, который соединяющий две противоположные вершины углов трапеции (отрезок АС на рисунке). Если трапеция прямоугольная, с помощью диагонали, найдем величину высоты трапеции h.

Прямоугольной трапецией называется такая трапеция, где одна из боковых сторон перпендикулярна основаниям. В этом случае ее длина (АД) совпадает с высотой h.

Итак, рассмотрим прямоугольную трапецию ABCD, где AD - это высота, DC - это основание, AC - это диагональ. Воспользуемся теоремой Пифагора. Квадрат гипотенузы AC прямоугольного треугольника ADC равен сумме квадратов его катетов AB и BC.

Тогда можно записать:

AC² = AD² + DC².

AD - это катет треугольника, боковая сторона трапеции и, в то же время, ее высота. Ведь отрезок АД перпендикулярен основаниям. Его длина составит:

AD = √(AC² - DC²)

Итак, имеем формулу для вычисления высоты трапеции h = AD

Пример

Если длина основания прямоугольной трапеции(DC) равна 14 см, а диагональ (AC) составляет 15 см, для получения значения высоты(AD -боковой стороны) воспользуемся теоремой Пифагора.

Пусть х - это неизвестный катет прямоугольного треугольника(AD), тогда

AC² = AD² + DC² можно записать

15² = 14² + х²,

х = √(15²-14²) = √(225-196) = √29 см

Ответ: высота прямоугольной трапеции (АВ) составит √29 см, что приблизительно составит, 5.385 см

Как найти высоту равнобедренной трапеции?

Равнобедренной трапецией, называют трапецию, у которой длины боковых сторон равны между собой. Прямая, проведенная через середины оснований такой трапеции будет осью симметрии. Частным случаем является трапеция, диагонали которой перпендикулярны друг другу, тогда высота h, будет равна полусумме оснований.

Рассмотрим случай, если диагонали не перпендикулярны друг другу. В равнобочной (равнобедренной) трапеции равны углы при основаниях и длины диагоналей равны. Также известно, что все вершины равнобокой трапеции касаются линии окружности, проведенной вокруг этой трапеции.

Рассмотрим рисунок. ABCD- равнобедренная трапеция. Известно, что основания трапеции параллельны, значит, BC = b параллельно AD = a, сторона AB = CD = c, значит, углы при основаниях соответственно равны, можно записать угол BAQ = CDS = α, и угол ABC = BCD = β. Таким образом, делаем вывод о равенстве треугольника ABQ треугольнику SCD, значит, отрезок

AQ = SD = (AD - BC)/2 = (a - b)/2.

Имея по условию задачи величины оснований a и b, и длину боковой стороны с, найдем высоту трапеции h, равную отрезку BQ.

Рассмотрим прямоугольный треугольник ABQ. ВО - высота трапеции, перпендикулярна основанию AD, значит и отрезку AQ. Сторону AQ треугольника ABQ, найдем, воспользовавшись выведенной нами ранее формулой:

Имея значения двух катетов прямоугольного треугольника, найдем гипотенузу BQ= h. Используем теорему Пифагора.

AB²= AQ² + BQ²

Подставим данные задачи:

c² = AQ² + h².

Получим формулу для нахождения высоты равнобедренной трапеции:

h = √(c²-AQ²).

Пример

Дана равнобедренная трапеция ABCD, где основание AD = a = 10см, основание BC = b = 4см, а боковая сторона AB = c = 12см. При таких условиях, рассмотрим на примере, как найти трапеции высоту, равнобедренной трапеции АВСД.

Найдем сторону AQ треугольника ABQ, подставив известные данные:

AQ = (a - b)/2 = (10-4)/2=3см.

Теперь подставим значения сторон треугольника в формулу теоремы Пифагора.

h = √(c²- AQ²) = √(12²- 3²) = √135 = 11.6см.

Ответ. Высота h равнобедренной трапеции ABCD составляет 11.6 см.

И . Теперь можно приступить к рассмотрению вопроса как найти площадь трапеции. Данная задача в быту возникает очень редко, но иногда оказывается необходимой, к примеру, чтобы найти площадь комнаты в форме трапеции, которые все чаще применяют при строительстве современных квартир, или в дизайн-проектах по ремонту.

Трапеция - это геометрическая фигура, образованная четырьмя пересекающимися отрезками, два из которых параллельны между собой и называются основаниями трапеции. Два других отрезка называются сторонами трапеции. Кроме того, в дальнейшем нам пригодится еще одно определение. Это средняя линия трапеции, которая представляет собой отрезок, соединяющий середины боковых сторон и высота трапеции, которая равна расстоянию между основаниями.
Как и у треугольников, у трапеция есть частные виды в виде равнобедренной (равнобокой) трапеции, у которой длина боковых сторон одинаковы и прямоугольной трапеции, у которой одна из сторон образует с основаниями прямой угол.

Трапеции обладают некоторыми интересными свойствами:

  1. Средняя линия трапеции равна полусумме оснований и параллельна им.
  2. У равнобедренных трапеций боковые стороны и углы которые они образуют с основаниями равны.
  3. Середины диагоналей трапеции и точка пересечения ее диагоналей находятся на одной прямой.
  4. Если сумма боковых сторон трапеции равна сумме оснований, то в нее можно вписать круг
  5. Если сумма углов, образованных сторонами трапеции у любого ее основания равна 90, то длина отрезка, соединяющего середины оснований, равна их полуразности.
  6. Равнобедренную трапецию можно описать окружностью. И наоборот. Если в трапеция вписывается в окружность, значит она равнобедренная.
  7. Отрезок, проходящий через середины оснований равнобедренной трапеции будет перпендикулярен ее основаниям и представляет собой ось симетрии.

Как найти площадь трапеции .

Площадь трапеции будет равна полусумме ее оснований, умноженной на высоту. В виде формулы это записывается в виде выражения:

где S-площадь трапеции, a,b-длина каждого из оснований трапеции, h-высота трапеции.


Понять и запомнить эту формулу можно следующим образом. Как следует из рисунка ниже трапецию с использованием средней линии можно преобразовать в прямоугольник, длина которого и будет равна полусумме оснований.

Можно также любую трапецию разложить на более простые фигуры: прямоугольник и один, или два треугольника и если вам так проще, то найти площадь трапеции, как сумму площадей составляющих ее фигур.

Есть еще одна простая формула для подсчета ее площади. Согласно ней площадь трапеции равна произведению ее средней линии на высоту трапеции и записывается в виде: S = m*h, где S-площадь, m-длина средней линии, h-высота трапеции. Данная формула больше подходит для задач по математике, чем для бытовых задач, так как в реальных условиях вам не будет известна длина средней линии без предварительных расчетов. А известны вам будут только длины оснований и боковых сторон.

В этом случае площадь трапеции может быть найдена по формуле:

S = ((a+b)/2)*√c 2 -((b-a) 2 +c 2 -d 2 /2(b-a)) 2

где S-площадь, a,b-основания, c,d-боковые стороны трапеции.

Существуют еще несколько способов того, как найти площади трапеции. Но, они примерно также неудобны как и последняя формула, а значит не имеет смысла на них останавливаться. Поэтому, рекомендуем вам пользоваться первой формулой из статьи и желаем всегда получать точные результаты.