Атомная бомба. Как работает ядерная боеголовка (4 фото)

Вся громада межконтинентальной баллистической ракеты, десятки метров и тонн сверхпрочных сплавов, высокотехнологичного топлива и совершенной электроники нужны лишь для одного - доставить к месту назначения боеголовку: конус высотой метр-полтора и толщиной у основания с туловище человека.

Взглянем на некую типовую боеголовку (в реальности между боеголовками могут существовать конструктивные различия). Это конус из легких прочных сплавов. Внутри есть переборки, шпангоуты, силовой каркас - почти всё как в самолете. Силовой каркас покрыт прочной металлической обшивкой. На обшивку нанесен толстый слой теплозащитного покрытия. Это похоже на древнюю корзину эпохи неолита, щедро обмазанную глиной и обожженную в первых экспериментах человека с теплом и керамикой. Схожесть легко объяснима: и корзине, и боеголовке предстоит сопротивляться наружному жару.

Внутри конуса, закрепленные на своих «сиденьях», находятся два основных «пассажира», ради которых все и затеяно: термоядерный заряд и блок управления зарядом, или блок автоматики. Они поразительно компактны. Блок автоматики - размером с пятилитровую банку маринованных огурцов, а заряд - с обычное огородное ведро. Тяжелый и увесистый, союз банки и ведра взорвется килотонн на триста пятьдесят - четыреста. Два пассажира соединены между собой связью, как сиамские близнецы, и через эту связь постоянно чем-то обмениваются. Диалог их ведется все время, даже когда ракета стоит на боевом дежурстве, даже когда этих близнецов только везут с предприятия-производителя.

Есть и третий пассажир - блок измерения движения боеголовки или вообще управления ее полетом. В последнем случае в боеголовку встроены рабочие органы управления, позволяющие изменять траекторию. Например, исполнительные пневмосистемы или пороховые системы. А еще бортовая электросеть с источниками питания, линии связи со ступенью, в виде защищенных проводов и разъемов, защита от электромагнитного импульса и система термостатирования - поддержания нужной температуры заряда.

Технология, по которой боевые блоки отделяются от ракеты и ложатся на собственные курсы - отдельная большая тема, о которой можно писать книги.

Для начала объясним, что такое "просто боевой блок". Это устройство, в котором физически находится термоядерный заряд на борту межконтинентальной баллистической ракеты. В ракете есть так называемая головная часть, в которой могут находиться один, два и более боевых блоков. Если их несколько, головная часть называется разделяющейся головной частью (РГЧ).

Внутри РГЧ находится очень сложный агрегат (его еще называют платформой разведения), который после вывода ракетой-носителем за пределы атмосферы начинает выполнять целый ряд запрограммированных действий по индивидуальному наведению и отделению находящихся на нем боевых блоков; в пространстве выстраиваются боевые порядки из блоков и ложных целей, которые изначально тоже находятся на платформе. Таким образом, каждый блок выводится на траекторию, обеспечивающую попадание в заданную цель на поверхности Земли.

Боевые блоки бывают разные. Те, что движутся по баллистическим траекториям после отделения от платформы, называются неуправляемыми. Управляемые же боевые блоки после отделения начинают "жить своей жизнью". Они снабжены двигателями ориентации для осуществления маневров в космическом пространстве, аэродинамическими рулевыми поверхностями для управления полетом в атмосфере, у них на борту установлена инерциальная система управления, несколько вычислительных устройств, радиолокатор со своим собственным вычислителем… Ну и, разумеется, боевой заряд.

Практически управляемый боевой блок сочетает в себе свойства беспилотного космического корабля и гиперзвукового беспилотного самолета. Все действия как в космосе, так и во время полета в атмосфере, этот аппарат обязан выполнять автономно.

После отделения от платформы разведения боевой блок относительно долго летит на очень большой высоте - в космосе. В это время система управления блока осуществляет целую серию переориентаций, чтобы создать условия для точного определения собственных параметров движения, облегчения преодоления зоны возможных ядерных взрывов противоракет…
Перед вхождением в верхние слои атмосферы бортовой компьютер вычисляет необходимую ориентацию боевого блока и выполняет ее. Примерно в тот же период проходят сеансы определения фактического местоположения при помощи радиолокатора, для чего тоже нужно сделать ряд маневров. Затем антенна локатора отстреливается, и для боевого блока начинается атмосферный участок движения.

Внизу перед боеголовкой раскинулся огромный, контрастно блестящий с грозных больших высот, затянутый голубой кислородной дымкой, подернутый аэрозольными взвесями, необозримый и безбрежный пятый океан. Медленно и еле заметно поворачиваясь от остаточных воздействий разделения, боеголовка по пологой траектории продолжает спуск. Но вот навстречу ей тихонько потянул очень необычный ветерок. Чуть тронул ее - и стал заметен, обтянул корпус тонкой, уходящей назад волной бледного бело-голубого свечения. Волна эта умопомрачительно высокотемпературная, но она пока не жжет боеголовку, так как слишком уж бесплотна. Ветерок, обдувающий боеголовку, - электропроводящий. Скорость конуса настолько высока, что он в буквальном смысле дробит своим ударом молекулы воздуха на электрически заряженные осколки, происходит ударная ионизация воздуха. Этот плазменный ветерок называется гиперзвуковым потоком больших чисел Маха, и его скорость в двадцать раз превосходит скорость звука.

Из-за большой разреженности ветерок в первые секунды почти незаметен. Нарастая и уплотняясь с углублением в атмосферу, он сперва больше греет, чем давит на боеголовку. Но постепенно начинает с силой обжимать ее конус. Поток разворачивает боеголовку носиком вперед. Разворачивает не сразу - конус слегка раскачивается туда-сюда, постепенно замедляя свои колебания, и наконец стабилизируется.

Уплотняясь по мере снижения, поток все сильнее давит на боеголовку, замедляя ее полет. С замедлением плавно снижается температура. От огромных значений начала входа, бело-голубого свечения десятка тысяч кельвинов, до желто-белого сияния пяти-шести тысяч градусов. Это температура поверхностных слоев Солнца. Сияние становится ослепительным, потому что плотность воздуха быстро растет, а с ней и тепловой поток в стенки боеголовки. Теплозащитное покрытие обугливается и начинает гореть.

Оно горит вовсе не от трения об воздух, как часто неверно говорят. Из-за огромной гиперзвуковой скорости движения (сейчас в пятнадцать раз быстрее звука) от вершины корпуса расходится в воздухе другой конус - ударно-волновой, как бы заключая в себе боеголовку. Набегающий воздух, попадая внутрь ударно-волнового конуса, мгновенно уплотняется во много раз и плотно прижимается к поверхности боеголовки. От скачкообразного, мгновенного и многократного сжатия его температура сразу подскакивает до нескольких тысяч градусов. Причина этого - сумасшедшая быстрота происходящего, запредельная динамичность процесса. Газодинамическое сжатие потока, а не трение - вот что сейчас прогревает боеголовке бока.

Хуже всего приходится носовой части. Там образуется наибольшее уплотнение встречного потока. Зона этого уплотнения слегка отходит вперед, как бы отсоединяясь от корпуса. И держится впереди, принимая форму толстой линзы или подушки. Такое образование называется «отсоединенная головная ударная волна». Она в несколько раз толще остальной поверхности ударно-волнового конуса вокруг боеголовки. Лобовое сжатие набегающего потока здесь самое сильное. Поэтому в отсоединенной головной ударной волне самая высокая температура и самая большая плотность тепла. Это маленькое солнце обжигает носовую часть боеголовки лучистым путем - высвечивая, излучая из себя тепло прямо в нос корпуса и вызывая сильное обгорание носовой части. Поэтому там самый толстый слой теплозащиты. Именно головная ударная волна освещает темной ночью местность на многие километры вокруг летящей в атмосфере боеголовки.

Связанные одной целью

Термоядерный заряд и блок управления непрерывно общаются друг с другом. "Диалог" этот начинается сразу после установки боеголовки на ракету, а завершается он в момент ядерного взрыва. Все это время система управления готовит заряд к срабатыванию, как тренер - боксера к ответственному поединку. И в нужный момент отдает последнюю и самую главную команду.

При постановке ракеты на боевое дежурство ее заряд оснащают до полной комплектации: устанавливают импульсный нейтронный активатор, детонаторы и другое оборудование. Но к взрыву он еще не готов. Десятилетиями держать в шахте или на мобильной пусковой установке ядерную ракету, готовую рвануть в любой момент, попросту опасно.

Поэтому во время полета система управления переводит заряд в состояние готовности к взрыву. Происходит это постепенно, сложными последовательными алгоритмами, базирующимися на двух основных условиях: надежность движения к цели и контроль над процессом. Стоит одному из этих факторов отклониться от расчетных значений и подготовка будет прекращена. Электроника переводит заряд во все более высокую степень готовности, чтобы в расчетной точке дать команду на срабатывание.

И когда в полностью готовый заряд придет из блока управления боевая команда на подрыв, взрыв произойдет немедленно, мгновенно. Боеголовка, летящая со скоростью снайперской пули, пройдет лишь пару сотых долей миллиметра, не успев сместиться в пространстве даже на толщину человеческого волоса, когда в ее заряде начнется, разовьется, полностью пройдет и уже завершится термоядерная реакция, выделив всю штатную мощность.

Сильно изменившись и снаружи, и внутри, боеголовка прошла в тропосферу - последний десяток километров высоты. Она сильно затормозилась. Гиперзвуковой полет выродился до сверхзвука в три-четыре единицы Маха. Светит боеголовка уже тускло, угасает и подходит к точке цели.

Взрыв на поверхности Земли планируется редко - только для углубленных в землю объектов вроде ракетных шахт. Большинство целей лежит на поверхности. И для их наибольшего поражения подрыв производят на некоторой высоте, зависящей от мощности заряда. Для тактических двадцати килотонн это 400−600 м. Для стратегической мегатонны оптимальная высота взрыва - 1200 м. Почему? От взрыва по местности проходят две волны. Ближе к эпицентру взрывная волна обрушится раньше. Упадет и отразится, отскочив в стороны, где и сольется с только что дошедшей сюда сверху, из точки взрыва, свежей волной. Две волны - падающая из центра взрыва и отраженная от поверхности - складываются, образуя в приземном слое наиболее мощную ударную волну, главный фактор поражения.

При испытательных же пусках боеголовка обычно беспрепятственно достигает земли. На ее борту находится полцентнера взрывчатки, подрываемой при падении. Зачем? Во-первых, боеголовка - секретный объект и должна надежно уничтожаться после использования. Во-вторых, это необходимо для измерительных систем полигона - для оперативного обнаружения точки падения и измерения отклонений.

Многометровая дымящаяся воронка завершает картину. Но перед этим, за пару километров до удара, с испытательной боеголовки отстреливается наружу бронекассета запоминающего устройства с записью всего, что регистрировалось на борту во время полета. Эта бронефлешка подстрахует от потери бортовой информации. Ее найдут позже, когда прилетит вертолет со спецгруппой поиска. И зафиксируют результаты фантастического полета.

Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.

По сути, там творится тот же процесс, что и при ядерном взрыве. Только вот взрыв происходит очень быстро, а в реакторе все это растягивается на длительное время. В итоге все остается целым и невредимым, а мы получаем энергию. Не столько, чтобы все вокруг сразу разнесло, но вполне достаточную для того, чтобы обеспечить электричеством город.

Прежде чем понять, как идет управляемая ядерная реакция, нужно узнать, что такое ядерная реакция вообще.

Ядерная реакция – это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.

Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.

Ядерный реактор – это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.

Часто ядерный реактор называют еще и атомным. Отметим, что принципиальной разницы тут нет, но с точки зрения науки правильнее использовать слово "ядерный". Сейчас существует множество типов ядерных реакторов. Это огромные промышленные реакторы, предназначенные для выработки энергии на электростанциях, атомные реакторы подводных лодок, малые экспериментальные реакторы, используемые в научных опытах. Существуют даже реакторы, применяемые для опреснения морской воды.

История создания атомного реактора

Первый ядерный реактор был запущен в не таком уж и далеком 1942 году. Произошло это в США под руководством Ферми. Этот реактор назвали "Чикагской поленницей".

В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.

Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем , отражатель нейтронов , теплоноситель , система управления и защиты . В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232). Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций - пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.

Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов . Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.

Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо . ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты . Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.

Как запускают ядерный реактор?

С самим принципом работы мы разобрались, но как запустить и заставить реактор функционировать? Грубо говоря, вот он - кусок урана, но ведь цепная реакция не начинается в нем сама по себе. Дело в том, что в ядерной физике существует понятие критической массы .

Критическая масса – это необходимая для начала цепной ядерной реакции масса делящегося вещества.

При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.

В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике – обращайтесь к специалистам нашей компании . Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!

Взрывной характер

Ядро урана содержит 92 протона. Природный уран представляет собой в основном смесь двух изотопов: U238 (в ядре которого 146 нейтронов) и U235 (143 нейтрона), причем последнего в природном уране лишь 0,7%. Химические свойства изотопов абсолютно идентичны, потому и разделить их химическими методами невозможно, но различие в массах (235 и 238 единиц) позволяет сделать это физическими методами: смесь уранов переводят в газ (гексафторид урана), а затем прокачивают через бесчисленные пористые перегородки. Хотя изотопы урана не отличимы ни по внешнему виду, ни химически, их разделяет пропасть в свойствах ядерных характеров.

Процесс деления U238 - платный: прилетающий извне нейтрон должен принести с собой энергию - 1 МэВ или более. А U235 бескорыстен: для возбуждения и последующего распада от пришедшего нейтрона ничего не требуется, вполне достаточно его энергии связи в ядре.

При попадании нейтрона в способное к делению ядро образуется неустойчивый компаунд, но очень быстро (через 10−23−10−22 с) такое ядро разваливается на два осколка, не равных по массе и «мгновенно» (в течение 10−16−10−14 с) испускающих по два-три новых нейтрона, так что со временем может размножаться и число делящихся ядер (такая реакция называется цепной). Возможно такое только в U235, потому что жадный U238 не желает делиться от своих собственных нейтронов, энергия которых на порядок меньше 1 МэВ. Кинетическая энергия частиц - продуктов деления на много порядков превышает энергию, выделяющуюся при любом акте химической реакции, в которой состав ядер не меняется.

Критическая сборка

Продукты деления нестабильны и еще долго «приходят в себя», испуская различные излучения (в том числе нейтроны). Нейтроны, которые испускаются через значительное время (до десятков секунд) после деления, называют запаздывающими, и хотя доля их по сравнению с мгновенными мала (менее 1%), роль, которую они играют в работе ядерных установок, - важнейшая.

Продукты деления при многочисленных столкновениях с окружающими атомами отдают им свою энергию, повышая температуру. После того как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а параметры сборки, в которой число делений в единицу времени постоянно, называют критическими. Критичность сборки может поддерживаться и при большом, и при малом числе нейтронов (при соответственно большей или меньшей мощности тепловыделения). Тепловую мощность увеличивают, либо подкачивая в критическую сборку дополнительные нейтроны извне, либо делая сборку сверхкритичной (тогда дополнительные нейтроны поставляют все более многочисленные поколения делящихся ядер). Например, если надо повысить тепловую мощность реактора, его выводят на такой режим, когда каждое поколение мгновенных нейтронов чуть менее многочисленно, чем предыдущее, но благодаря запаздывающим нейтронам реактор едва заметно переходит критическое состояние. Тогда он не идет в разгон, а набирает мощность медленно - так, что прирост ее можно в нужный момент остановить, введя поглотители нейтронов (стержни, содержащие кадмий или бор).

Образующиеся при делении нейтроны часто пролетают мимо окружающих ядер, не вызывая повторного деления. Чем ближе к поверхности материала рожден нейтрон, тем больше у него шансов вылететь из делящегося материала и никогда не возвратиться обратно. Поэтому формой сборки, сберегающей наибольшее количество нейтронов, является шар: для данной массы вещества он имеет минимальную поверхность. Ничем не окруженный (уединенный) шар из 94% U235 без полостей внутри становится критичным при массе в 49 кг и радиусе 85 мм. Если же сборка из такого же урана представляет собой цилиндр с длиной, равной диаметру, она становится критичной при массе в 52 кг. Поверхность уменьшается и при возрастании плотности. Поэтому-то взрывное сжатие, не меняя количества делящегося материала, может приводить сборку в критическое состояние. Именно этот процесс и лежит в основе распространенной конструкции ядерного заряда.

Шаровая сборка

Но чаще всего в ядерном оружии применяют не уран, а плутоний-239. Его получают в реакторах, облучая уран-238 мощными нейтронными потоками. Плутоний стоит примерно в шесть раз дороже U235, но зато при делении ядро Pu239 испускает в среднем 2,895 нейтрона - больше, чем U235 (2,452). К тому же вероятность деления плутония выше. Все это приводит к тому, что уединенный шар Pu239 становится критичным при почти втрое меньшей массе, чем шар из урана, а главное - при меньшем радиусе, что позволяет уменьшить габариты критической сборки.

Сборка выполняется из двух тщательно подогнанных половинок в форме шарового слоя (полой внутри); она заведомо подкритична - даже для тепловых нейтронов и даже после окружения ее замедлителем. Вокруг сборки из очень точно пригнанных блоков взрывчатки монтируют заряд. Чтобы сберечь нейтроны, надо и при взрыве сохранить благородную форму шара - для этого слой взрывчатого вещества необходимо подорвать одновременно по всей его внешней поверхности, обжав сборку равномерно. Широко распространено мнение, что для этого нужно много электродетонаторов. Но так было только на заре «бомбостроения»: для срабатывания многих десятков детонаторов требовалось много энергии и немалые размеры системы инициирования. В современных зарядах применяется несколько отобранных по специальной методике, близких по характеристикам детонаторов, от которых срабатывает высокостабильная (по скорости детонации) взрывчатка в отфрезерованных в слое поликарбоната канавках (форма которых на сферической поверхности рассчитывается с применением методов геометрии Римана). Детонация со скоростью примерно 8 км/с пробежит по канавкам абсолютно равные расстояния, в один и тот же момент времени достигнет отверстий и подорвет основной заряд - одновременно во всех требуемых точках.

Взрыв вовнутрь

Направленный внутрь взрыв сдавливает сборку давлением более миллиона атмосфер. Поверхность сборки уменьшается, в плутонии почти исчезает внутренняя полость, плотность увеличивается, причем очень быстро - за десяток микросекунд сжимаемая сборка проскакивает критическое состояние на тепловых нейтронах и становится существенно сверхкритичной на нейтронах быстрых.

Через период, определяемый ничтожным временем незначительного замедления быстрых нейтронов, каждый из нового, более многочисленного их поколения добавляет производимым им делением энергию в 202 МэВ в и без того распираемое чудовищным давлением вещество сборки. В масштабах происходящих явлений прочность даже самых лучших легированных сталей столь мизерна, что никому и в голову не приходит учитывать ее при расчетах динамики взрыва. Единственное, что не дает разлететься сборке, - инерция: чтобы расширить плутониевый шар за десяток наносекунд всего на 1 см, требуется придать веществу ускорение, в десятки триллионов раз превышающее ускорение свободного падения, а это непросто.

В конце концов вещество все же разлетается, прекращается деление, но процесс на этом не завершается: энергия перераспределяется между ионизованными осколками разделившихся ядер и другими испущенными при делении частицами. Их энергия - порядка десятков и даже сотен МэВ, но только электрически нейтральные гамма-кванты больших энергий и нейтроны имеют шансы избежать взаимодействия с веществом и «ускользнуть». Заряженные же частицы быстро теряют энергию в актах столкновений и ионизаций. При этом испускается излучение - правда, уже не жесткое ядерное, а более мягкое, с энергией на три порядка меньшей, но все же более чем достаточной, чтобы выбить у атомов электроны - не только с внешних оболочек, но и вообще все. Мешанина из голых ядер, ободранных с них электронов и излучения с плотностью в граммы на кубический сантиметр (попытайтесь представить, как хорошо можно загореть под светом, приобретшим плотность алюминия!) - все то, что мгновение назад было зарядом, - приходит в некое подобие равновесия. В совсем молодом огненном шаре устанавливается температура порядка десятков миллионов градусов.

Огненный шар

Казалось бы, даже и мягкое, но двигающееся со скоростью света излучение должно оставить далеко позади вещество, которое его породило, но это не так: в холодном воздухе пробег квантов кэвных энергий составляет сантиметры, и двигаются они не по прямой, а меняя направление движения, переизлучаясь при каждом взаимодействии. Кванты ионизируют воздух, распространяются в нем, подобно вишневому соку, вылитому в стакан с водой. Это явление называют радиационной диффузией.

Молодой огненный шар взрыва мощностью в 100 кт через несколько десятков наносекунд после завершения вспышки делений имеет радиус 3 м и температуру почти 8 млн кельвинов. Но уже через 30 микросекунд его радиус составляет 18 м, правда, температура спускается ниже миллиона градусов. Шар пожирает пространство, а ионизованный воздух за его фронтом почти не двигается: передать ему значительный импульс при диффузии излучение не может. Но оно накачивает в этот воздух огромную энергию, нагревая его, и, когда энергия излучения иссякает, шар начинает расти за счет расширения горячей плазмы, распираемой изнутри тем, что раньше было зарядом. Расширяясь, подобно надуваемому пузырю, плазменная оболочка истончается. В отличие от пузыря, ее, конечно, ничто не надувает: с внутренней стороны почти не остается вещества, все оно летит от центра по инерции, но через 30 микросекунд после взрыва скорость этого полета - более 100 км/с, а гидродинамическое давление в веществе - более 150 000 атм! Стать чересчур уж тонкой оболочке не суждено, она лопается, образуя «волдыри».

Какой из механизмов передачи энергии огненного шара окружающей среде превалирует, зависит от мощности взрыва: если она велика - основную роль играет радиационная диффузия, если мала - расширение плазменного пузыря. Понятно, что возможен и промежуточный случай, когда эффективны оба механизма.

Процесс захватывает новые слои воздуха, энергии на то, чтобы ободрать все электроны с атомов, уже не хватает. Иссякает энергия ионизованного слоя и обрывков плазменного пузыря, они уже не в силах двигать перед собой огромную массу и заметно замедляются. Но то, что до взрыва было воздухом, движется, оторвавшись от шара, вбирая в себя все новые слои воздуха холодного… Начинается образование ударной волны.

Ударная волна и атомный гриб

При отрыве ударной волны от огненного шара меняются характеристики излучающего слоя и резко возрастает мощность излучения в оптической части спектра (так называемый первый максимум). Далее конкурируют процессы высвечивания и изменения прозрачности окружающего воздуха, что приводит к реализации и второго максимума, менее мощного, но значительно более длительного - настолько, что выход световой энергии больше, чем в первом максимуме.

Вблизи взрыва все окружающее испаряется, подальше - плавится, но и еще дальше, где тепловой поток уже недостаточен для плавления твердых тел, грунт, скалы, дома текут, как жидкость, под чудовищным, разрушающим все прочностные связи напором газа, раскаленного до нестерпимого для глаз сияния.

Наконец, ударная волна уходит далеко от точки взрыва, где остается рыхлое и ослабевшее, но расширившееся во много раз облако из конденсировавшихся, обратившихся в мельчайшую и очень радиоактивную пыль паров того, что побывало плазмой заряда, и того, что в свой страшный час оказалось близко к месту, от которого следовало бы держаться как можно дальше. Облако начинает подниматься вверх. Оно остывает, меняя свой цвет, «надевает» белую шапку сконденсировавшейся влаги, за ним тянется пыль с поверхности земли, образуя «ножку» того, что принято называть «атомным грибом».

Нейтронное инициирование

Внимательные читатели могут с карандашом в руках прикинуть энерговыделение при взрыве. При времени нахождения сборки в сверхкритическом состоянии порядка микросекунд, возрасте нейтронов порядка пикосекунд и коэффициенте размножения менее 2 выделяется около гигаджоуля энергии, что эквивалентно… 250 кг тротила. А где же кило- и мегатонны?

Дело в том, что цепь делений в сборке начинается не с одного нейтрона: в нужную микросекунду их впрыскивают в сверхкритическую сборку миллионами. В первых ядерных зарядах для этого использовались изотопные источники, расположенные в полости внутри плутониевой сборки: полоний-210 в момент сжатия соединялся с бериллием и своими альфа-частицами вызывал нейтронную эмиссию. Но все изотопные источники слабоваты (в первом американском изделии генерировалось менее миллиона нейтронов за микросекунду), а полоний уж очень скоропортящийся - всего за 138 суток снижает свою активность вдвое. Поэтому на смену изотопам пришли менее опасные (не излучающие в невключенном состоянии), а главное - излучающие более интенсивно нейтронные трубки (см. врезку): за несколько микросекунд (столько длится формируемый трубкой импульс) рождаются сотни миллионов нейтронов. А вот если она не сработает или сработает не вовремя, произойдет так называемый хлопок, или «пшик» - маломощный тепловой взрыв.

Нейтронное инициирование не только увеличивает на много порядков энерговыделение ядерного взрыва, но и дает возможность регулировать его! Понятно, что, получив боевую задачу, при постановке которой обязательно указывается мощность ядерного удара, никто не разбирает заряд, чтобы оснастить его плутониевой сборкой, оптимальной для заданной мощности. В боеприпасе с переключаемым тротиловым эквивалентом достаточно просто изменить напряжение питания нейтронной трубки. Соответственно, изменится выход нейтронов и выделение энергии (разумеется, при снижении мощности таким способом пропадает зря много дорогого плутония).

Но о необходимости регулирования энерговыделения стали задумываться много позже, а в первые послевоенные годы разговоров о снижении мощности и быть не могло. Мощнее, мощнее и еще раз мощнее! Но оказалось, что существуют ядерно-физические и гидродинамические ограничения допустимых размеров докритической сферы. Тротиловый эквивалент взрыва в сотню килотонн близок к физическому пределу для однофазных боеприпасов, в которых происходит только деление. В итоге от деления как основного источника энергии отказались, ставку сделали на реакции другого класса - синтеза.

Ядерные заблуждения

Плотность плутония в момент взрыва увеличивается за счет фазового перехода

Металлический плутоний существует в шести фазах, плотность которых от 14,7 до 19,8 г/см3. При температуре ниже 119 °C существует моноклинная альфа-фаза (19,8 г/см3), но такой плутоний очень хрупок, а в кубической гранецентрированной дельта-фазе (15,9) он пластичен и хорошо обрабатывается (именно эту фазу и стараются сохранить с помощью легирующих добавок). При детонационном обжатии никаких фазовых переходов быть не может - плутоний находится в состоянии квазижидкости. Фазовые переходы опасны при производстве: при больших размерах деталей даже при незначительном изменении плотности возможно достижение критического состояния. Конечно, взрыва не последует - заготовка просто раскалится, но может произойти сброс никелирования (а плутоний очень токсичен).

Нейтронный источник


В первых ядерных бомбах использовался бериллий-полониевый источник нейтронов. В современных зарядах применяются гораздо более удобные нейтронные трубки

В вакуумной нейтронной трубке между насыщенной тритием мишенью (катодом) (1) и анодным узлом (2) прикладывается импульсное напряжение в 100 кВ. Когда напряжение максимально, необходимо, чтобы между анодом и катодом оказались ионы дейтерия, которые и требуется ускорить. Для этого служит ионный источник. На его анод (3) подается поджигающий импульс, и разряд, проходя по поверхности насыщенной дейтерием керамики (4), образует ионы дейтерия. Ускорившись, они бомбардируют мишень, насыщенную тритием, в результате чего выделяется энергия 17,6 МэВ и образуются нейтроны и ядра гелия-4.

По составу частиц и даже по энергетическому выходу эта реакция идентична синтезу - процессу слияния легких ядер. В 1950-х многие считали, что это и есть синтез, но позже выяснилось, что в трубке происходит «срыв»: либо протон, либо нейтрон (из которых состоит ион дейтерия, разогнанный электрическим полем) «увязает» в ядре мишени (трития). Если увязает протон, нейтрон отрывается и становится свободным.

Нейтроны - медленные и быстрые

В неделящемся веществе, «отскакивая» от ядер, нейтроны передают им часть своей энергии, тем большую, чем легче (ближе им по массе) ядра. Чем в большем числе столкновений поучаствовали нейтроны, тем более они замедляются, а затем, наконец, приходят в тепловое равновесие с окружающим веществом - термализуются (это занимает миллисекунды). Скорость тепловых нейтронов - 2200 м/с (энергия 0,025 эВ). Нейтроны могут ускользнуть из замедлителя, захватываются его ядрами, но с замедлением их способность вступать в ядерные реакции существенно возрастает, поэтому нейтроны, которые «не потерялись», с лихвой компенсируют убыль численности.

Так, если шар делящегося вещества окружить замедлителем, многие нейтроны покинут замедлитель или будут поглощены в нем, но будут и такие, которые вернутся в шар («отразятся») и, потеряв свою энергию, с гораздо большей вероятностью вызовут акты деления. Если шар окружить слоем бериллия толщиной 25 мм, то можно сэкономить 20 кг U235 и все равно достичь критического состояния сборки. Но за такую экономию платят временем: каждое последующее поколение нейтронов, прежде чем вызвать деление, должно сначала замедлиться. Эта задержка уменьшает число поколений нейтронов, рождающихся в единицу времени, а значит, энерговыделение затягивается. Чем меньше делящегося вещества в сборке, тем больше требуется замедлителя для развития цепной реакции, а деление идет на все более низкоэнергетичных нейтронах. В предельном случае, когда критичность достигается только на тепловых нейтронах, например в растворе солей урана в хорошем замедлителе - воде, масса сборок составляет сотни граммов, но раствор просто периодически вскипает. Выделяющиеся пузырьки пара уменьшают среднюю плотность делящегося вещества, цепная реакция прекращается, а когда пузырьки покидают жидкость, вспышка делений повторяется (если закупорить сосуд, пар разорвет его - но это будет тепловой взрыв, лишенный всех типичных «ядерных» признаков).

Видео: Ядерные взрывы

Подписывайтесь и читайте наши лучшие публикации в Яндекс.Дзен . Смотрите красивые фотографии со всех уголков планеты на нашей странице в Instagram

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

После окончания Второй Мировой войны страны антигитлеровской коалиции стремительными темпами пытались опередить друг друга в разработках более мощной ядерной бомбы.

Первое испытание, проведённое американцами на реальных объектах в Японии, до предела накалило обстановку между СССРи США. Мощные взрывы, прогремевшие в японских городах и практически уничтожившие всё живое в них, заставили Сталина отказаться от множества притязаний на мировой арене. Большинство советских учёных-физиков было в срочном порядке «брошены» на разработку ядерного оружия.

Когда и как появилось ядерное оружие

Годом рождения атомной бомбы можно считать 1896 год. Именно тогда учёный-химик из Франции А. Беккерель открыл, что уран радиоактивен. Цепная реакция урана образует мощную энергию, которая служит основой для страшного взрыва. Вряд ли Беккерель предполагал, что его открытие приведёт к созданию ядерного оружия — самого страшного оружия во всём мире.

Конец 19 — начало 20 века стал переломным моментом в истории изобретения ядерного оружия. Именно в этом временном промежутке учёные различных стран мира смогли открыть следующие законы, лучи и элементы:

  • Альфа, гамма и бета лучи;
  • Было открыто множество изотопов химических элементов, обладающих радиоактивными свойствами;
  • Был открыт закон радиоактивного распада, который определяет временную и количественную зависимость интенсивности радиоактивного распада, зависящую от количества радиоактивных атомов в испытуемом образце;
  • Зародилась ядерная изометрия.

В 1930-х годах впервые смогли расщепить атомное ядро урана с поглощением нейтронов. В это же время были открыты позитроны и нейроны. Всё это дало мощный толчок к разработкам оружия, которое использовало атомную энергию. В 1939 году была запатентована первая в мире конструкция атомной бомбы. Это сделал физик из Франции Фредерик Жолио-Кюри.

В результате дальнейших исследований и разработок в данной сфере, на свет появилась ядерная бомба. Мощность и радиус поражения современных атомных бомб настолько велик, что страна, которая обладает ядерным потенциалом, практически не нуждается в мощной армии, так как одна атомная бомба способна уничтожить целое государство.

Как устроена атомная бомба

Атомная бомба состоит из множества элементов, главными из которых являются:

  • Корпус атомной бомбы;
  • Система автоматики, контролирующая процесс взрыва;
  • Ядерного заряда или боеголовки.

Система автоматики находится в корпусе атомной бомбы, вместе с ядерным зарядом. Конструкция корпуса должна быть достаточно надёжной, чтобы уберечь боеголовку от различных внешних факторов и воздействий. Например, различного механического, температурного или подобного влияния, которое может привести к незапланированному взрыву огромной мощности, способному уничтожить всё вокруг.

В задачу автоматики входит полный контроль над тем, чтобы взрыв произошёл в нужное время, поэтому система состоит из следующих элементов:

  • Устройство, отвечающее за аварийный подрыв;
  • Источник питания системы автоматики;
  • Система датчиков подрыва;
  • Устройство взведения;
  • Устройство предохранения.

Когда проводились первые испытания, ядерные бомбы доставлялись на самолётах, которые успевали покинуть зону поражения. Современные атомные бомбы обладают такой мощностью, что их доставка может осуществляться только с помощью крылатых, баллистических или хотя бы зенитных ракет.

В атомных бомбах применяются различные системы детонирования. Самая простейшая из них – это обычное устройство, которое срабатывает при попадании снаряда в цель.

Одной из основных характеристик ядерных бомб и ракет, является разделение их на калибры, которые бывают трёх типов:

  • Малый, мощность атомных бомб данного калибра эквивалентна нескольким тысячам тонн тротила;
  • Средний (мощность взрыва – несколько десятков тысяч тонн тротила);
  • Крупный, мощность заряда которого измеряется миллионами тонн тротила.

Интересно, что чаще всего мощность всех ядерных бомб измеряется именно в тротиловом эквиваленте, так как для атомного оружие не существует своей шкалы измерения мощности взрыва.

Алгоритмы действия ядерных бомб

Любая атомная бомба действует по принципу использования ядерной энергии, которая выделяется в ходе ядерной реакции. В основе данной процедуры лежит или деление тяжёлых ядер или синтез лёгких. Так как в ходе данной реакции выделяется огромное количество энергии, причём в кратчайшее время, радиус поражения ядерной бомбы очень впечатляет. Из-за этой особенности ядерное оружие относят к классу оружия массового поражения.

В ходе процесса, который запускается при взрыве атомной бомбы, имеются два главных момента:

  • Это непосредственный центр взрыва, где проходит ядерная реакция;
  • Эпицентр взрыва, который находится на месте, где взорвалась бомба.

Ядерная энергия, выделяемая при взрыве атомной бомбы, настолько сильна, что на земле начинаются сейсмические толчки. При этом непосредственные разрушения данные толчки приносят лишь на расстоянии нескольких сотен метров (хотя если учитывать силу взрыва самой бомбы, данные толчки уже ни на что не влияют).

Факторы поражения при ядерном взрыве

Взрыв ядерной бомбы приносит не только ужасные мгновенные разрушения. Последствия данного взрыва ощутят на себе не только люди, попавшие в зону поражения, но и их дети, родившиеся после атомного взрыва. Типы поражения атомным оружием подразделяются на следующие группы:

  • Световое излучение, которое происходит непосредственно при взрыве;
  • Ударная волна, распространяемая бомбой сразу после взрыва;
  • Электромагнитный импульс;
  • Проникающая радиация;
  • Радиоактивное заражение, которое может сохраниться на десятки лет.

Хотя на первый взгляд, световая вспышка несет меньше всего угрозы, на самом деле она образуется в результате высвобождения огромного количества тепловой и световой энергии. Её мощность и сила намного превосходит мощность лучей солнца, поэтому поражение светом и теплом может стать фатальным на расстоянии нескольких километров.

Радиация, которая выделяется при взрыве, тоже очень опасна. Хотя она действует недолго, но успевает заразить всё вокруг, так как её проникающая способность невероятно велика.

Ударная волна при атомном взрыве действует подобно такой же волне при обычных взрывах, только её мощность и радиус поражения намного больше. За несколько секунд она наносит непоправимые повреждения не только людям, но и технике, зданиям и окружающей природе.

Проникающая радиация провоцирует развитие лучевой болезни, а электромагнитный импульс представляет опасность только для техники. Совокупность всех этих факторов, плюс мощность взрыва, делают атомную бомбу самым опасным оружием в мире.

Первые в мире испытания ядерного оружия

Первой страной, разработавшей и испытавшей ядерное оружие, оказались Соединённые Штаты Америки. Именно правительство США выделило огромные денежные дотации на разработку нового перспективного оружия. К концу 1941 года в США были приглашены многие выдающиеся учёные в сфере атомных разработок, которые уже к 1945 году смогли представить опытный образец атомной бомбы, пригодный для испытаний.

Первые в мире испытания атомной бомбы, оснащенной взрывным устройством, были проведены в пустыне на территории штата Нью-Мексико. Бомба под названием «Gadget» была взорвана 16 июля 1945 года. Результат испытаний оказался положительным, хотя военные требовали испытать ядерную бомбу в реальных боевых условиях.

Увидев, что до победы на гитлеровской коалицией остался всего один шаг, и больше такой возможности может не представиться, Пентагон решил нанести ядерный удар по последнему союзнику гитлеровской Германии – Японии. Кроме того, использование ядерной бомбы должно было решить сразу несколько проблем:

  • Избежать ненужного кровопролития, которое неизбежно бы случилось, если бы войска США ступили на территорию императорской Японии;
  • Одним ударом поставить на колени неуступчивых японцев, заставив их пойти на условия, выгодные США;
  • Показать СССР (как возможному сопернику в будущем), что армия США обладает уникальным оружием, способным стереть с лица земли любой город;
  • И, конечно же, на практике убедиться, на что способно ядерное оружие в реальных боевых условиях.

6 августа 1945 года на японский город Хиросима была сброшена первая в мире атомная бомба, которая применялась в военных действиях. Эту бомбу назвали «Малыш», так как её вес составлял 4 тонны. Сброс бомбы был тщательно спланирован, и она попала именно туда, куда и планировалось. Те дома, которые не были разрушены взрывной волной, сгорели, так как упавшие в домах печки спровоцировали пожары, и весь город был объят пламенем.

После яркой вспышки последовала тепловая волна, которая сожгла всё живое в радиусе 4 километров, а последовавшая за ней ударная волна разрушила большую часть зданий.

Те, кто попал под тепловой удар в радиусе 800 метров, были сожжены заживо. Взрывной волной у многих сорвало обгоревшую кожу. Через пару минут прошёл странный чёрный дождь, который состоял из пара и пепла. У тех, кто попал под чёрный дождь, кожа получила неизлечимые ожоги.

Те немногие, которым посчастливилось уцелеть, заболели лучевой болезнью, которая в то время была не только не изучена, но и полностью неизвестна. У людей началась лихорадка, рвота, тошнота и приступы слабости.

9 августа 1945 года на город Нагасаки была сброшена вторая американская бомба, которая называлась «Толстяк». Данная бомба имела примерно такую же мощность, как и первая, а последствия её взрыва были столь же разрушительные, хотя людей погибло в два раза меньше.

Две атомные бомбы, сброшенные на японские города, оказались первым и единственным в мире случаями применения атомного оружия. Более 300 000 человек погибли в первые дни после бомбардировки. Ещё около 150 тысяч погибли от лучевой болезни.

После ядерной бомбардировки японских городов, Сталин получил настоящий шок. Ему стало ясно, что вопрос разработки ядерного оружия в советской России – это вопрос безопасности всей страны. Уже 20 августа 1945 года начал работать специальный комитет по вопросам атомной энергии, который был в срочном порядке создан И. Сталиным.

Хотя исследования по ядерной физике проводились группой энтузиастов ещё в царской России, в советское время ей не уделяли должного внимания. В 1938 году все исследования в этой области были полностью прекращены, а многие учёные-ядерщики репрессированы, как враги народа. После ядерных взрывов в Японии советская власть резко начала восстанавливать ядерную отрасль в стране.

Имеются данные, что разработка ядерного оружия велась в гитлеровской Германии, и именно немецкие учёные доработали «сырую» американскую атомную бомбу, поэтому правительство США вывезло из Германии всех специалистов-атомщиков и все документы, связанные с разработкой ядерного оружия.

Советская разведывательная школа, которая за время войны смогла обойти все зарубежные разведки, ещё в 1943 году передавала в СССР секретные документы, связанные с разработкой ядерного оружия. В то же время были внедрены советские агенты во все серьёзные американские центры ядерных исследований.

В результате всех этих мер, уже в 1946 году было готово техническое задание по изготовлению двух ядерных бомб советского производства:

  • РДС-1 (с плутониевым зарядом);
  • РДС-2 (с двумя частями уранового заряда).

Аббревиатура «РДС» расшифровывалась как «Россия делает сама», что практически полностью соответствовало действительности.

Новости о том, что СССР готов выпустить своё ядерное оружие, заставило правительство США пойти на радикальные меры. В 1949 году был разработан план «Троян», согласно которому на 70 крупнейших городов СССР планировалось сбросить атомные бомбы. Лишь опасения ответного удара помешали этому плану осуществиться.

Данные тревожные сведения, поступающие от советских разведчиков, заставили учёных работать в авральном режиме. Уже в августе 1949 года состоялись испытания первой атомной бомбы, произведённой в СССР. Когда США узнала про эти испытания, план «Троян» был отложен на неопределённое время. Началась эпоха противостояния двух сверх держав, известная в истории как «Холодная война».

Самая мощная ядерная бомба в мире, известная под именем «Царь-бомбы» принадлежит именно периоду «Холодной войны». Учёные СССР создали самую мощную бомбу в истории человечества. Её мощность составляла 60 мегатонн, хотя планировалось создать бомбу в 100 килотонн мощности. Испытания данной бомбы прошли в октябре 1961 года. Диаметр огненного шара при взрыве составил 10 километров, а взрывная волна облетела земной шар три раза. Именно это испытание заставило большинство стран мира подписать договор о прекращении ядерных испытаний не только в атмосфере земли, но даже в космосе.

Хотя атомное оружие является превосходным средством устрашения агрессивных стран, с другой стороны оно способно гасить любые военные конфликты в зародыше, так как при атомном взрыве могут быть уничтожены все стороны конфликта.

Атомная электроэнергетика – современный и быстро развивающийся способ добычи электричества. А вы знаете, как устроены атомные станции? Каков принцип работы АЭС? Какие типы ядерных реакторов сегодня существуют? Постараемся детально рассмотреть схему работы АЭС, вникнуть в устройство ядерного реактора и узнать о том, насколько безопасен атомный способ добычи электроэнергии.

Любая станция – это закрытая зона вдалеке от жилого массива. На ее территории находятся несколько зданий. Самое главное сооружение – здание реактора, рядом с ним расположен машинный зал, из которого реактором управляют, и здание безопасности.

Схема невозможна без ядерного реактора. Атомный (ядерный) реактор – это устройство АЭС, которое призвано организовать цепную реакцию деления нейтронов с обязательным выделением энергии при этом процессе. Но каков принцип работы АЭС?

Вся реакторная установка помещается в здание реактора, большую бетонную башню, которая скрывает реактор и в случае аварии удержит в себе все продукты ядерной реакции. Эту большую башню называют контейнтмент, герметичная оболочка или гермозона.

Гермозона в новых реакторах имеет 2 толстые бетонные стенки – оболочки.
Внешняя оболочка толщиной в 80 см обеспечивает защиту гермозоны от внешних воздействий.

Внутренняя оболочка толщиной в 1 метр 20 см имеет в своем устройстве специальные стальные тросы, которые увеличивают прочность бетона почти в три раза и не дадут конструкции рассыпаться. С внутренней стороны она выложена тонким листом специальной стали, которая призвана служить дополнительной защитой контейнтмента и в случае аварии не выпустить содержимое реактора за пределы гермозоны.

Такое устройство атомной станции позволяет выдержать падение самолета весом до 200 тонн, 8 бальное землетрясение, торнадо и цунами.

Впервые герметичная оболочка была сооружена на американской АЭС Коннектикут Янки в 1968 году.

Полная высота гермозоны – 50-60 метров.

Из чего состоит атомный реактор?

Чтобы понять принцип работы ядерного реактора, а значит и принцип работы АЭС, нужно разобраться в составляющих реактора.

  • Активная зона. Это зона, куда помещается ядерное топливо (тепловыделитель) и замедлитель. Атомы топлива (чаще всего топливом выступает уран) совершают цепную реакцию деления. Замедлитель призван контролировать процесс деления, и позволяет провести нужную по скорости и силе реакцию.
  • Отражатель нейтронов. Отражатель окружает активную зону. Состоит он из того же материала, что и замедлитель. По сути это короб, главное назначение которого – не дать нейтронам выйти из активной зоны и попасть в окружающую среду.
  • Теплоноситель. Теплоноситель должен вобрать в себя тепло, которое выделилось при делении атомов топлива, и передать его другим веществам. Теплоноситель во многом определяет то, как устроена АЭС. Самый популярный теплоноситель на сегодня – вода.
    Система управления реактором. Датчики и механизмы, которые приводят реактор АЭС в действие.

Топливо для АЭС

На чем работает АЭС? Топливо для АЭС – это химические элементы, обладающие радиоактивными свойствами. На всех атомных станциях таким элементом выступает уран.

Устройство станций подразумевает, что АЭС работают на сложном составном топливе, а не на чистом химическом элементе. И чтобы из природного урана добыть урановое топливо, которое загружается в ядерный реактор, нужно провести множество манипуляций.

Обогащенный уран

Уран состоит из двух изотопов, то есть в его составе есть ядра с разной массой. Назвали их по количеству протонов и нейтронов изотоп -235 и изотоп-238. Исследователи 20 века начали добывать из руды 235й уран, т.к. его легче было разлагать и преобразовывать. Выяснилось, что такого урана в природе всего 0,7 % (остальные проценты достались 238му изотопу).

Что делать в этом случае? Уран решили обогащать. Обогащение урана это процесс, когда в нем остается много нужных 235х изотопов и мало ненужных 238х. Задача обогатителей урана – из 0.7% сделать почти 100% урана-235.

Обогатить уран можно с помощью двух технологий – газодиффузионной или газоцентрифужной. Для их использования уран, добытый из руды, переводят в газообразное состояние. В виде газа его и обогащают.

Урановый порошок

Обогащенный урановый газ переводят в твердое состояние – диоксид урана. Такой чистый твердый 235й уран выглядит как большие белые кристаллы, которые позже дробят в урановый порошок.

Урановые таблетки

Урановые таблетки – это твердые металлические шайбы, длиной в пару сантиметров. Чтобы из уранового порошка слепить такие таблетки, его перемешивают с веществом – пластификатором, он улучшает качество прессования таблеток.

Прессованные шайбы запекают при температуре 1200 градусов по Цельсию более суток, чтобы придать таблеткам особую прочность и устойчивость к высоким температурам. То, как работает АЭС, напрямую зависит от того, насколько хорошо спрессовали и запекли урановое топливо.

Запекают таблетки в молибденовых ящиках, т.к. только этот металл способен не расплавиться при «адских» температурах свыше полутора тысяч градусов. После этого урановое топливо для АЭС считается готовым.

Что такое ТВЭЛ и ТВС?

Активная зона реактора внешне выглядит как огромный диск или труба с дырками в стенках (в зависимости от типа реактора), раз в 5 больше человеческого тела. В этих дырках находится урановое топливо, атомы которого и проводят нужную реакцию.

Просто так закинуть топливо в реактор невозможно, ну, если вы не хотите получить взрыв всей станции и аварию с последствиями на пару близлежащих государств. Поэтому урановое топливо помещается в ТВЭЛы, а потом собирается в ТВС. Что значат эти аббревиатуры?

  • ТВЭЛ – тепловыделяющий элемент (не путать с одноименным названием российской компании, которая их производит). По сути это тонкая и длинная циркониевая трубка, сделанная из сплавов циркония, в которую помещаются урановые таблетки. Именно в ТВЭЛах атомы урана начинают взаимодействовать друг с другом, выделяя тепло при реакции.

Цирконий выбран материалом для производства ТВЭЛов благодаря его тугоплавкости и антикоррозийности.

Тип ТВЭЛов зависит от типа и строения реактора. Как правило, строение и назначение ТВЭЛов не меняется, разными могут быть длина и ширина трубки.

В одну циркониевую трубку автомат загружает более 200 урановых таблеток. Всего в реакторе одновременно работают около 10 миллионов урановых таблеток.
ТВС – тепловыделяющая сборка. Работники АЭС называют ТВС пучками.

По сути это несколько ТВЭЛов, скрепленных между собой. ТВС – это готовое атомное топливо, то, на чем работает АЭС. Именно ТВС загружаются в ядерный реактор. В один реактор помещаются около 150 – 400 ТВС.
В зависимости от того, в каком реакторе ТВС будет работать, они бывают разной формы. Иногда пучки складываются в кубическую, иногда в цилиндрическую, иногда в шестиугольную форму.

Одна ТВС за 4 года эксплуатации вырабатывает столько же энергии как при сжигании 670 вагонов угля, 730 цистерн с природным газом или 900 цистерн, груженных нефтью.
Сегодня ТВС производят в основном на заводах России, Франции, США и Японии.

Чтобы доставить топливо для АЭС в другие страны, ТВС запечатывают в длинные и широкие металлические трубы, из труб выкачивают воздух и специальными машинами доставляют на борта грузовых самолетов.

Весит ядерное топливо для АЭС запредельно много, т.к. уран – один из самых тяжелых металлов на планете. Его удельный вес в 2,5 раза больше, чем у стали.

Атомная электростанция: принцип работы

Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.

ВАЖНО ЗНАТЬ:

Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так:
После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.

Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.

Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.

Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.

Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.

Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.

Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?

Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.

Типы ядерных реакторов

То, как работает АЭС, зависит от того, как именно работает ее атомный реактор. Сегодня есть два основных типа реакторов, которые классифицируются по спектру нейронов:
Реактор на медленных нейтронах, его также называют тепловым.

Для его работы используется 235й уран, который проходит стадии обогащения, создания урановых таблеток и т.д. Сегодня реакторов на медленных нейтронах подавляющее большинство.
Реактор на быстрых нейтронах.

За этими реакторами будущее, т.к. работают они на уране-238, которого в природе пруд пруди и обогащать этот элемент не нужно. Минус таких реакторов только в очень больших затратах на проектирование, строительство и запуск. Сегодня реакторы на быстрых нейтронах работают только в России.

Теплоносителем в реакторах на быстрых нейтронах выступает ртуть, газ, натрий или свинец.

Реакторы на медленных нейтронах, которыми сегодня пользуются все АЭС мира, тоже бывают нескольких типов.

Организация МАГАТЭ (международное агентство по атомной энергетике) создало свою классификацию, которой пользуются в мировой атомной энергетике чаще всего. Так как принцип работы атомной станции во многом зависит от выбора теплоносителя и замедлителя, МАГАТЭ базировали свою классификацию на этих различиях.


С химической точки зрения оксид дейтерия идеальный замедлитель и теплоноситель, т.к. ее атомы наиболее эффективно взаимодействуют с нейтронами урана по сравнению с другими веществами. Попросту говоря, свою задачу тяжелая вода выполняет с минимальными потерями и максимальным результатом. Однако ее производство стоит денег, в то время как обычную «легкую» и привычную для нас воду использовать куда проще.

Несколько фактов об атомных реакторах…

Интересно, что один реактор АЭС строят не менее 3х лет!
Для постройки реактора необходимо оборудование, которое работает на электрическом токе в 210 кило Ампер, что в миллион раз превышает силу тока, которая способна убить человека.

Одна обечайка (элемент конструкции) ядерного реактора весит 150 тонн. В одном реакторе таких элементов 6.

Водо-водяной реактор

Как работает АЭС в целом, мы уже выяснили, чтобы все «разложить по полочкам» посмотрим, как работает наиболее популярный водо-водяной ядерный реактор.
Во всем мире сегодня используют водо-водяные реакторы поколения 3+. Они считаются самыми надежными и безопасными.

Все водо-водяные реакторы в мире за все годы их эксплуатации в сумме уже успели набрать более 1000 лет безаварийной работы и ни разу не давали серьезных отклонений.

Структура АЭС на водо-водяных реакторах, подразумевает, что между ТВЭЛами циркулирует дистиллированная вода, нагретая до 320 градусов. Чтобы не дать ей перейти в парообразное состояние ее держат под давлением в 160 атмосфер. Схема АЭС называет ее водой первого контура.

Нагретая вода попадает в парогенератор и отдает свое тепло воде второго контура, после чего снова «возвращается» в реактор. Внешне это выглядит так, что трубки воды первого контура соприкасаются с другими трубками – воды второго контура, они передают тепло друг другу, но воды не контактируют. Контактируют трубки.

Таким образом, исключена возможность попадания радиации в воду второго контура, которая будет далее участвовать в процессе добычи электричества.

Безопасность работы АЭС

Узнав принцип работы АЭС мы должны понимать как же устроена безопасность. Устройство АЭС сегодня требует повышенного внимания к правилам безопасности.
Затраты на безопасность АЭС составляют примерно 40% от общей стоимости самой станции.

В схему АЭС закладываются 4 физических барьера, которые препятствуют выходу радиоактивных веществ. Что должны делать эти барьеры? В нужный момент суметь прекратить ядерную реакцию, обеспечивать постоянный отвод тепла от активной зоны и самого реактора, предотвращать выход радионуклеидов за пределы контайнмента (гермозоны).

  • Первый барьер – прочность урановых таблеток. Важно, чтобы они не разрушались под воздействием высоких температур в ядерном реакторе. Во многом то, как работает атомная станция, зависит от того, как «испекли» таблетки из урана на начальной стадии изготовления. Если таблетки с урановым топливом запечь неверно, то реакции атомов урана в реакторе будут непредсказуемыми.
  • Второй барьер – герметичность ТВЭЛов. Циркониевые трубки должны быть плотно запечатаны, если герметичность будет нарушена, то в лучшем случае реактор будет поврежден и работа остановлена, в худшем – все взлетит на воздух.
  • Третий барьер – прочный стальной корпус реактор а, (та самая большая башня – гермозона) который «удерживает» в себе все радиоактивные процессы. Повредится корпус – радиация выйдет в атмосферу.
  • Четвертый барьер – стержни аварийной защиты. Над активной зоной на магниты подвешиваются стержни с замедлителями, которые могут за 2 секунды поглотить все нейтроны и остановить цепную реакцию.

Если, несмотря на устройство АЭС с множеством степеней защиты, охладить активную зону реактора в нужный момент не удастся, и температура топлива возрастет до 2600 градусов, то в дело вступает последняя надежда системы безопасности – так называемая ловушка расплава.

Дело в том, что при такой температуре дно корпуса реактора расплавится, и все остатки ядерного топлива и расплавленных конструкций стекут в специальный подвешенный над активной зоной реактора «стакан».

Ловушка расплава охлаждаема и огнеупорна. Она наполнена так называемым «жертвенным материалом», который постепенно останавливает цепную реакцию деления.

Таким образом, схема АЭС подразумевает несколько степеней защиты, которые практически полностью исключают любую возможность аварии.